Voice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, autocorrelation, and log energy. A modified version of fuzzy C-Means is then used to cluster speech segments into three clusters; two clusters for voice and one for unvoiced. After that, three feed forward neural networks are trained to adjust their weights, in which each network represents one cluster. To make the final decision regarding the class type of a given speech segment, the membership degrees of this segment in all clusters along with neural networks' decisions are given to a defuzzification step which finally gives the class type of that segment. The proposed FN-AVAD is tested on the public multimodal emotion database, Surrey AudioVisual Expressed Emotion (SAVEE), and the error rate was 2.08%. The achieved results are comparable to the results achieved by the current published works in the literature.
The quality of Global Navigation Satellite Systems (GNSS) networks are considerably influenced by the configuration of the observed baselines. Where, this study aims to find an optimal configuration for GNSS baselines in terms of the number and distribution of baselines to improve the quality criteria of the GNSS networks. First order design problem (FOD) was applied in this research to optimize GNSS network baselines configuration, and based on sequential adjustment method to solve its objective functions.
FOD for optimum precision (FOD-p) was the proposed model which based on the design criteria of A-optimality and E-optimality. These design criteria were selected as objective functions of precision, whic
... Show MoreSoftware Defined Network (SDN) is a new technology that separate the control plane from the data plane. SDN provides a choice in automation and programmability faster than traditional network. It supports the Quality of Service (QoS) for video surveillance application. One of most significant issues in video surveillance is how to find the best path for routing the packets between the source (IP cameras) and destination (monitoring center). The video surveillance system requires fast transmission and reliable delivery and high QoS. To improve the QoS and to achieve the optimal path, the SDN architecture is used in this paper. In addition, different routing algorithms are used with different steps. First, we eva
... Show MoreIn this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal
... Show MoreArtificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show MoreIt is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i
... Show MoreThe Manganese doped zinc sulfide nanoparticles of the cubic zinc blende structure with the average crystallite size of about 3.56 nm were synthesized using a coprecipitation method using Thioglycolic Acid as an external capping agent for surface modification. The ZnS:Mn2+ nanoparticles of diameter 3.56 nm were manufactured through using inexpensive precursors in an efficient and eco-friendly way. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy are used to examine the structure, morphology and chemical composition of the nanoparticles. The antimicrobial activity of (ZnS:Mn2+) nanocrystals was investigated by measuring the diameter of inhibition zone using well diffusion mechanism
... Show MoreIn this study, Zinc oxide nanostructures were synthesized via a hydrothermal method by using zinc nitrate hexahydrate and sodium hydroxide as a precursor. Three different annealing temperatures were used to study their effect on ZnO NSs properties. The synthesized nanostructure was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Atomic force microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). Their optical properties were studied by using UV -visible spectroscopy. The XRD analysis confirms that all ZnO nanostructures have the hexagonal wurtzite structure with average crystallite size within the range of (30.59 - 34
... Show More6-(2-benzathiazolyl azo),-3,5-dimethylphenol was formed by grouping the 2- benzothiazole diazonium chloride with 3,5-dimethylphenol. Azo ligand(L) was resolved on the origin by 1H and 13CNMR, FTIR and UV-V is spectral analysis. Complexation of tridentate ligand (L) with Co2+, Ni2+, Cu2+ and Zn2+ in aqueous of ethyl alcohol with a 1:2 metal:ligand, and at ideal pH.. The formation of metal chelates are assigned using flame atomic, absorption, FTIR, and UV-Vis spectral analysis, other than conductivity and magnetic estates. The nature of the metal chelates were carried out by mole ratio and continuous, variation mechanism, Beer's law, followed the rate (0.0001 - 3×0.0001 M) concentration., High molar, absorptivity, for the complex solutions w
... Show MoreAllopurinol derivative were prepared by reacting the (1-chloroacetyl)-2-Hydropyrazolo{3,4-d}pyrimidine-4-oneiwith 5- methoxy- 2-aminoibenzothiazoleiunder certain conditions to obtain new compound ( N- (2-aminoacetyl (5-methoxy) benzothiazole -2yl) (A4), Reaction of 5-(P-dimethyl amine benzene)-2-amino-1,3,4- oxadiazole in the presence of potassium carbonate anhydrous to yield new compound (N-(2- aminoacetyl-5-(P-dimethyl amine benzene )-1,3,4-oxadiazoles-2-yl)(A30) and Azo compound (N-(5-(Azo-2-hydroxy-5-amino benzene)-1,3-Diazol-2yl)Allopurinol(A46). The structure of prepared compounds were confirmed by (FT-IR)
... Show More