Voice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, autocorrelation, and log energy. A modified version of fuzzy C-Means is then used to cluster speech segments into three clusters; two clusters for voice and one for unvoiced. After that, three feed forward neural networks are trained to adjust their weights, in which each network represents one cluster. To make the final decision regarding the class type of a given speech segment, the membership degrees of this segment in all clusters along with neural networks' decisions are given to a defuzzification step which finally gives the class type of that segment. The proposed FN-AVAD is tested on the public multimodal emotion database, Surrey AudioVisual Expressed Emotion (SAVEE), and the error rate was 2.08%. The achieved results are comparable to the results achieved by the current published works in the literature.
Our goal in the present paper is to recall the concept of general fuzzy normed space and its basic properties in order to define the adjoint operator of a general fuzzy bounded operator from a general fuzzy normed space V into another general fuzzy normed space U. After that basic properties of the adjoint operator were proved then the definition of fuzzy reflexive general fuzzy normed space was introduced in order to prove that every finite dimensional general fuzzy normed space is fuzzy reflexive.
The last decade of this 20th century provides a wide spread of applications of one of the computer techniques, which is called Fuzzy Logic. This technique depends mainly on the fuzzy set theory, which is considered as a general domain with respect to the conventional set theory. This paper presents in initiative the fuzzy sets theory and fuzzy logic as a complete mathematics system. Here it was explained the concept of fuzzy set and defined the operations of fuzzy logic. It contains eleven operations beside the other operations which related to fuzzy algebra. Such search is considered as an enhancement for supporting the others waiting search activities in this field.
The attribute quality control charts are one of the main useful tools to use in control of quality product in companies. In this paper utilizing the statistical procedures to find the attribute quality control charts for through fuzzified the real data which we got it from Baghdad Soft Drink Company in Iraq, by using triangular membership function to obtain the fuzzy numbers then employing the proposed ranking function to transform to traditional sample. Then, compare between crisp and fuzzy attribute quality control.
The aim of this study is to synthesize an easy, non-toxic and eco-friendly method. Silver nanoparticles which were synthesized by leaf extract of mint were characterized by UV-Visible Spectroscopy which appears UVVisible spectrum of demonstrated a peak 448 nm corresponding to surface Plasmon resonance of silver nanoparticles, Fourier Transform Infrared Spectroscopy (FTIR); functional groups involved in the silver nanoparticles synthesis were identified, the presence of silver nanoparticles was confirmed by X-ray diffraction (XRD) and Atomic Force Microscope (AFM) analysis clearly illustrated that the shape of silver nanoparticles was spherical and the size of the silver nanoparticles has been measured as 55- 85 nm. Evaluation of its antimic
... Show MoreGenerally, radiologists analyse the Magnetic Resonance Imaging (MRI) by visual inspection to detect and identify the presence of tumour or abnormal tissue in brain MR images. The huge number of such MR images makes this visual interpretation process, not only laborious and expensive but often erroneous. Furthermore, the human eye and brain sensitivity to elucidate such images gets reduced with the increase of number of cases, especially when only some slices contain information of the affected area. Therefore, an automated system for the analysis and classification of MR images is mandatory. In this paper, we propose a new method for abnormality detection from T1-Weighted MRI of human head scans using three planes, including axial plane, co
... Show MoreIn today's world, the science of bioinformatics is developing rapidly, especially with regard to the analysis and study of biological networks. Scientists have used various nature-inspired algorithms to find protein complexes in protein-protein interaction (PPI) networks. These networks help scientists guess the molecular function of unknown proteins and show how cells work regularly. It is very common in PPI networks for a protein to participate in multiple functions and belong to many complexes, and as a result, complexes may overlap in the PPI networks. However, developing an efficient and reliable method to address the problem of detecting overlapping protein complexes remains a challenge since it is considered a complex and har
... Show MoreSliding Mode Controller (SMC) is a simple method and powerful technique to design a robust controller for nonlinear systems. It is an effective tool with acceptable performance. The major drawback is a classical Sliding Mode controller suffers from the chattering phenomenon which causes undesirable zigzag motion along the sliding surface. To overcome the snag of this classical approach, many methods were proposed and implemented. In this work, a Fuzzy controller was added to classical Sliding Mode controller in order to reduce the impact chattering problem. The new structure is called Sliding Mode Fuzzy controller (SMFC) which will also improve the properties and performance of the classical Sliding Mode control
... Show MoreIn many applications such as production, planning, the decision maker is important in optimizing an objective function that has fuzzy ratio two functions which can be handed using fuzzy fractional programming problem technique. A special class of optimization technique named fuzzy fractional programming problem is considered in this work when the coefficients of objective function are fuzzy. New ranking function is proposed and used to convert the data of the fuzzy fractional programming problem from fuzzy number to crisp number so that the shortcoming when treating the original fuzzy problem can be avoided. Here a novel ranking function approach of ordinary fuzzy numbers is adopted for ranking of triangular fuzzy numbers with simpler an
... Show MoreGame theory problems (GTP) frequently occur in Economy, Business Studies, Sociology, Political Science, Military Activities, and so on are some of the subjects covered. To tackle the uncertainty in Games, the analysis of games in which the payoffs are represented by fuzzy numbers (FN) will benefit from fuzzy set theory (FST).
The purpose of this paper is to develop an efficient technique for solving constraint matrix games (MG) with payoff trapezoidal fuzzy numbers (TFN). The description of the new ranking method is introduced for a constrained matrix with TFN and values. Stock market forecasting has been one of the most important research areas for decades. Stock market values are volatile, non-linear, complicated and ch
... Show More