- The sandy soil with high gypsum content (usually referred to as gypseous soil) covers vast area in south, east, middle and west regions of Iraq, such soil possess a type of cohesive forces when attached with optimum amount of water, then compacted and allowed to cure, but losses its strength when flooded with water again. Much work on earth reinforcement was published which concentrate on the gain in bearing capacity in the reinforced layer using different types of cohesive or cohesion less soil and various types of reinforcement such as plastic, metal, grids, and synthetic textile. Little attention was paid to there enforce gypseous soil. The objective of this work is to study the interaction between such soil and reinforcement strips and determine the frictional stress between there enforcement strips and gypseous soil at its cured condition and at the asphalt stabilized condition through the pullout technique. This work presents a laboratory investigation on earth reinforced embankment model box. The box was filled with gypseous soil compacted in layers to a predetermined density. Aluminum and plastic reinforcement strips of variable geometric types were embedded at each layer. After compaction of each layer, and filling the box, the strips were subjected to pullout test to determine the frictional resistance between the soil and the strips at different spacing in the vertical and horizontal planes. The same procedure was repeated on another box after subjecting the embankment to curing for 10 days. A third embankment model was constructed using asphalt stabilized gypseous soil. Finally, the frictional behavior of the models was evaluated and the reinforcing strips behavior and capabilities were determined
Background: Polyetheretherketone (PEEK) is a promising implant material due to its superior biomechanical strength. However, due to its hydrophobic nature and lack of cellular adhesion properties, it has poor integration with bone tissue. Methods: A fractional CO2 laser was used with various parameters for surface texturing of PEEK substrate to enhance its surface properties. An optical microscope and field-emission scanning electron microscope (FESEM) were used to examine the surface morphology of untextured and laser-textured samples. Energy dispersive X-ray spectroscopy (EDX) was performed to determine the effect of the laser on the microstructure of PEEK. Surface microroughness, atomic force microscopy (AFM), and wettability were invest
... Show MoreThe reliability of optical sources is strongly dependent on the degradation and device characteristics are critically dependent on temperature. The degradation behaviours and reliability test results for the laser diode device (Sony-DL3148-025) will be presented .These devices are usually highly reliable. The degradation behaviour was exhibited in several aging tests, and device lifetimes were then estimated. The temperature dependence of 0.63?m lasers was studied. An aging test with constant light power operation of 5mW was carried out at 10, 25, 50 and 70°C for 100hours. Lifetimes of the optical sources have greatly improved, and these optical sources can be applied to various types of transmission systems. Within this degradation range,
... Show MoreThree different distribution modules of silicon solar cells in a panel are used in this study . Each module consists of five identical circular silicon solar cells of radius (5cm) and then the total panel areas are identical. The five solar cells are arranged in the panel in different shapes: circular, triangular and rectangular .The efficiency for these three panel distribution are measured indoor and outdoor. The results show that the efficiency is a function of the cells distribution.
S Khalifa E, AM Sabeeh A, AN Adil A, AW Ghassan H…, 2007
A new two series of liquid crystalline Schiff bases containing thiazole moiety with different length of alkoxy spacer were synthesized, and the relation between the spacer length and the liquid crystalline behavior was investigated. The molecular structures of these compounds were performed by elemental analysis and FTIR, 1HNMR spectroscopy. The liquid crystalline properties were examined by hot stage optical polarizing microscopy (OPM) and differential scanning calorimetry (DSC). All compouns of the two series display liquid crystalline nematic mesophase. The liquid crystalline behaviour has been analyzed in terms of structural property relationship
The present study attempts to determine the effect of freezing for different periods on preserved bodies of fish in the laboratory to keep for the research and diagnosis of taxonomic studies and not for consumption. It also endeavors to identify the effect of freezing on some morphometric features of the preserved bodies of fishes. Planiliza abu fish were used to conduct the present study. Fish were frozen by regular freezing in the home refrigerator freezer with temperatures reaching four degrees centigrade below zero. Freezing time is distributed over four months; biometric measurements of frozen fish have been taken in these periods represented by body total length, Standard length, and Head length in centimeters using a ruler ve
... Show MoreBackground: Ejection fraction have been used frequently
for assessment of the left ventricular function, but can be
associated with errors in which myocardial performance
index have been used as another parameter to measure the
left ventricular function.
Objective: selecting another echocardiography parameter
for the assessment of myocardial in function instead of the
ejection fraction.
Methods: 160 patients referred to the echocardiogram unit
from the period december 2007 to august 2008 requesting
assessment of left ventricular function. After clinical
examination, routine blood tests; chest x-ray and
electrocardiographic recording have been completed. All
patients informed to come for this unit af
Chitosan (CH) / Poly (1-vinylpyrrolidone-co-vinyl acetate) (PVP-co-VAc) blend (1:1) and nanocomposites reinforced with CaCO3 nanoparticles were prepared by solution casting method. FTIR analysis, tensile strength, Elongation, Young modulus, Thermal conductivity, water absorption and Antibacterial properties were studied for blend and nanocomposites. The tensile results show that the tensile strength and Young’s modulus of the nanocomposites were enhanced compared with polymer blend [CH/(PVP-co-VAc)] film. The mechanical properties of the polymer blend were improved by the addition of CaCO3 with significant increases in Young’s modulus (from 1787 MPa to ~7238 MPa) and tensile strength (from 47.87 MPa to 79.75 MPa). Strong interfacial
... Show More