Automatic license plate recognition (ALPR) used for many applications especially in security applications, including border control. However, more accurate and language-independent techniques are still needed. This work provides a new approach to identifying Arabic license plates in different formats, colors, and even including English characters. Numbers, characters, and layouts with either 1-line or 2-line layouts are presented. For the test, we intend to use Iraqi license plates as there is a wide range of license plate styles written in Arabic, Kurdish, and English/Arabic languages, each different in style and color. This variety makes it difficult for recent traditional license plate recognition systems and algorithms to recognize all these license plate types using the same algorithm. In this work, a new method has been proposed to efficiently recognize all these types of license plates. This has been done by utilizing a series of algorithms for preprocessing and recognition with new identification strategies. The results show that the system recognized license plate numbers with higher accuracy, reaching up to 97.85%. However, the method field to detect license plates when there are some high deformations in plate numbers or when they are partially covered with mud, which makes it difficult to distinguish numbers.
Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreSmall and Medium Enterprises (SMEs) in Iraq have experienced low performance due to the limited usage of accounting information systems (AIS) and the inability to exploit knowledge of management capabilities (KMC). These deficiencies have led to competitive pressures in the marketplace that have adversely affected their sales and production. This study investigates the role of AIS in terms of operation support, knowledge support, regulatory support, and the role of KMC, including knowledge acquisition, knowledge transfer, and knowledge utilized to enhance organizational performance in Iraqi SMEs. The target population was managers and owners in SMEs using AIS in Iraq’s cities. A non-probability purposive sampling technique was use
... Show MoreThe increase in population resulted in an increase in the consumption of water. The present work investigates the performance of a recycling solar- powered greywater treatment system for the purposes of irrigation, used to reduce the amount of waste grey water and reduce electricity consumption and reduce the costs of constructing large scale water treatment plants. The system consumes about 3814W per hour and provides water treatment about 1.4 m3 per day. The proposed system is designed to residential, office and governmental buildings application. Tests are conducted in an office building at the Ministry of Science and Technology site in Baghdad. Laboratorial water samples testing analyses are co
... Show MoreLaser-Induced Breakdown Spectroscopy (LIBS) has been documented as an Atomic Emission Spectroscopy (AES) technique, utilising laser-induced plasma, in order to analyse elements in materials (gases, liquids and solid). The Nd:YAG laser passively Q-switched at 1064nm and 9ns pulse duration focused by convex lens with focal length 100 mm to generates power density 5.5×1012 Mw/mm2 with optical spectrum in the range 320-740 nm. Four soil samples were brought from different northern region of Iraq, northern region (Beiji, Sherkat, Serjnar and Zerkary).
The soil of the Northern region of Beige, Sherkat, Serjnar and Zarkary has abundant ratios of the elements P [0.08, 0.09, 0.18, 0.18] and Ca [0.61, 0.15, 0.92, 0.92] while it lack of Si [0.0