Automatic license plate recognition (ALPR) used for many applications especially in security applications, including border control. However, more accurate and language-independent techniques are still needed. This work provides a new approach to identifying Arabic license plates in different formats, colors, and even including English characters. Numbers, characters, and layouts with either 1-line or 2-line layouts are presented. For the test, we intend to use Iraqi license plates as there is a wide range of license plate styles written in Arabic, Kurdish, and English/Arabic languages, each different in style and color. This variety makes it difficult for recent traditional license plate recognition systems and algorithms to recognize all these license plate types using the same algorithm. In this work, a new method has been proposed to efficiently recognize all these types of license plates. This has been done by utilizing a series of algorithms for preprocessing and recognition with new identification strategies. The results show that the system recognized license plate numbers with higher accuracy, reaching up to 97.85%. However, the method field to detect license plates when there are some high deformations in plate numbers or when they are partially covered with mud, which makes it difficult to distinguish numbers.
The aerodynamic and elastic forces may cause an oscillation of the structure such as the high frequency of the airfoil surfaces and the dynamic instability occurring in an aircraft in flight and failure may occur at a speed called flutter speed. In this work, analytical and numerical investigations of flutter limits of thin plates have been carried out. The flutter speed of rectangular plates were obtained and compared with some published results. Different design parameters were investigated such as aspect ratio, thickness and their effects on flutter velocity. It was found that the structural mode shape plays an important role in the determination of the flutter speed and the coupling between the bending and torsional mode is the main
... Show More
The melting duration in the photovoltaic/phase-change material (PV/PCM) system is a crucial parameter for thermal energy management such that its improvement can realize better energy management in respect to thermal storage capabilities, thermal conditions, and the lifespan of PV modules. An innovative and efficient technique for improving the melting duration is the inclusion of an exterior metal foam layer in the PV/PCM system. For detailed investigations of utilizing different metal foam configurations in terms of their convective heat transfer coefficients, the present paper proposes a newly developed mathematical model for the PV/PCM–metal foam assembly that can readily be implemented with a wide range of operating condition
... Show MoreThis paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closedloop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loadin
... Show MoreThis search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as com
... Show MoreThis search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as
... Show MoreWhen the depth of stressed soil is rather small, Plate Load Test (PLT) becomes the most efficient test to estimate the soil properties for design purposes. Among these properties, modulus of subgrade reaction is the most important one that usually employed in roads and concrete pavement design. Two methods are available to perform PLT: static and dynamic methods. Static PLT is usually adopted due to its simplicity and time saving to be performs in comparison with cyclic (dynamic) method. The two methods are described in ASTM standard.
In this paper the effect of the test method used in PLT in estimation of some mechanical soil properties was distinguished via a series of both test methods applied in a same site. The comparison of
... Show MoreWith the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show More