At the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance penalty. Due to the massive calculations required by conventional public-key and secret encryption methods, information security in this limited context calls for light encryption techniques. In many applications involving sensor networks, security is a crucial concern. On the basis of traditional cryptography, a number of security procedures are created for wireless sensor networks. Some symmetric-key encryption techniques used in sensor network setups include AES, RC5, SkipJack, and XXTEA. These algorithms do, however, have several flaws of their own, including being susceptible to chosen-plaintext assault, brute force attack, and computational complexity.
The research aims to identify the future teachers' attitudes toward cloud computing in the Kingdom of Saudi Arabia from their point of view. The research adopted the descriptive approach, and a questionnaire was applied to a random sample of (370) male and female teachers in governmental and private general education schools in the Al-Jouf region, Saudi Arabia. The results of the research concluded that the reality of future teachers' attitudes towards cloud computing in the Kingdom of Saudi Arabia from their point of view is very high and that most areas of using computing are in the field of assessment, then teaching, and activities. The challenges of future teachers' attitudes toward cloud computing are recorded at a high level, parti
... Show Moreالمستخلص يهدف هذا البحث الى تجاوز مشكلة البعدية من خلال طرائق الانحدار اللامعلمي والتي تعمل على تقليل جذر متوسط الخطأ التربيعي (RMSE) , أذ تم استعمال طريقة انحدار الاسقاطات المتلاحقة (PPR) ,والتي تعتبر احدى طرائق اختزال الابعاد التي تعمل على تجاوز مشكلة البعدية (curse of dimensionality) , وان طريقة (PPR) من التقنيات الاحصائية التي تهتم بأيجاد الاسقاطات الاكثر أهمية في البيانات المتعددة الابعاد , ومع ايجاد كل اسقاط
... Show MoreDeep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing
... Show MoreAbstract
This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model
... Show MoreDeep learning techniques are used across a wide range of fields for several applications. In recent years, deep learning-based object detection from aerial or terrestrial photos has gained popularity as a study topic. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles andclassification probabilities for an image. In layman's terms, it is a technique for instantly identifying and rec
... Show MoreAbstract
Semiconductor-based gas sensors were prepared, that use n-type tin oxide (SnO2) and tin oxide: zinc oxide composite (SnO2)1-x(ZnO)x at different x ratios using pulse laser deposition at room temperature. The prepared thin films were examined to reach the optimum conditions for gas sensing applications, namely X-ray diffraction, Hall effect measurements, and direct current conductivity. It was found that the optimum crystallinity and maximum electron density, corresponding to the minimum charge carrier mobility, appeared at 10% ZnO ratio. This ratio appeared has the optimum NO2 gas sensitivity for 5% gas concentration at 300 °C working temperat
... Show MoreIn this work, Co-Y-oxide Nano Structure is successfully synthesized via hydrothermal method. The XRD analysis, SEM analysis, optical, electrical and photo sensing properties have been investigated for Co3O4 and Co-Y-oxide thin films. The X-ray diffraction (XRD) analysis reveals that all films are polycrystalline in nature, having cubic structure. The SEM images of thin films clearly indicates that Co3O4 possesses nanosphere like structure and flower like for Co-Y-oxide. The optical properties show that the optical energy gap follows allowed direct electronic transition calculated using Tauc equation and it increases for Co-Y-oxide. The photo sensing properties of thin films are investigated as a function of time at different wavelengths to
... Show MoreThe gas sensing properties of undoped Co3O4 and doped with Y2O3 nanostructures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for the prepared thin films. XRD analysis showed that all films were polycrystalline, of a cubic structure with crystallite size of (12.6) nm for cobalt oxide and (12.3) nm for the Co3O4:6% Y2O3. The SEM analysis of thin films indicated that all films undoped Co3O4 and doped possessed a nanosphere-like structure.
The sensi
... Show MoreIn this study, pure Co3O4 nano structure and doping with 4 %, and
6 % of Yttrium is successfully synthesized by hydrothermal method.
The XRD examination, optical, electrical and photo sensing
properties have been studied for pure and doped Co3O4 thin films.
The X-ray diffraction (XRD) analysis shows that all films are
polycrystalline in nature, having cubic structure.
The optical properties indication that the optical energy gap follows
allowed direct electronic transition calculated using Tauc equation
and it increases for doped Co3O4. The photo sensing properties of
thin films are studied as a function of time at different wavelengths to
find the sensitivity for these lights.
High photo sensitivity dope