Preferred Language
Articles
/
OxaJT4wBVTCNdQwC8vs-
Theoretical Analysis of Composite RC Beams with Pultruded GFRP Beams subjected to Impact Loading
...Show More Authors

Glass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load. The integrated acceleration record and the measured hammer load vs. time data were utilized to determine the generalized bending load and fracture energy. Four forms of energy were calculated at the maximum load. The total energy was calculated and divided into two parts: The first part was gained by the beam's rotational kinetic energy, the bending energy in the specimen, and the elastic strain energy. The second part was the hammer's kinetic energy before striking the beam. The analytical results showed that the bending energy was less than its rotational kinetic energy for the encased GFRP beams and the reference specimens. In contrast, the encased steel beams had high bending energy due to the higher impact load and deflection. Strain energy recorded lower energy values for all specimens with higher bending energy. There is a good agreement between the tested and the calculated inertial and bending force for all beams. The ratio of inertia force to the total impact load for the encased GFRP and encased steel beams to the reference beam is about 9% and 5%, respectively.

Scopus Clarivate Crossref
View Publication
Publication Date
Wed Sep 30 2020
Journal Name
Neuroquantology
Theoretical Analysis of the Electronic Current at Au/PTCDA Interface
...Show More Authors

Abstract We have been studied and analysis the electronic current at the interfaces of Au/PTCDA system according to simple quantum mode for the electronics transition rate due to postulate quantum theory. Calculation of electronic current were performed at interface of Au/PTCDA as well as for investigation the feature of electronic density at this devices. The transition of electronic current study under assume the electronic state of Au and PTCDA were continuum and the states of electrons must be closed to energy level for Au at Fermi state, and the potential at interface feature depended on structure of Au and PTCDA material. The electronic transition current feature was dependent on the driving force energy that results of absorption ene

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (4)
Scopus Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
THE STATIC ANALYSIS OF COMPOSITE AIRCRAFT WINGBOX STRUCTURE
...Show More Authors

In this paper, the static analysis for finding the best location of boxes inside the composite wing-box structure has been performed. A software ANSYS (ver.11) was used to analyses the Aluminum wing to find the maximum stresses reached in. These results are used as a base for the composite wingbox to find the numbers of layers and location of the box beam and its dimensions so that the composite wingbox may carry the same loading conditions in the Aluminum wing. Analysis showed that a composite wingbox having two boxes is better than the single or triple boxes wing based on stress to weight ratio. Mass saving of (40%) had been achieved when composite wing-box is used instead of Aluminum wing.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Dec 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Buckling Analysis of Unidirectional Polymer Matrix Composite Plates
...Show More Authors

This study deals with the estimation of critical load of unidirectional polymer matrix composite plates by using experimental and finite element techniques at different fiber angles and fiber volume fraction of the composite plate.

            Buckling analysis illustrated that the critical load decreases in nonlinear relationship with the increase of the fiber angle and that it increases with the increase of the fiber volume fraction.

            The results show that the maximum value of the critical load is (629.54 N/m) at (q = 0°) and (Vf = 40 %) for the finite element method, while the minimum val

... Show More
View Publication Preview PDF
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Engineering
Stability and Dynamic Analysis of Laminated Composite Plates
...Show More Authors

Buckling and free vibration analysis of laminated rectangular plates with uniform and non uniform distributed in-plane compressive loadings along two opposite edges is performed using the Ritz method. Classical laminated plate theory is adopted. The static component of the applied in- plane loading are assumed to vary according to uniform, parabolic or linear distributions. Initially, the plate membrane problem is solved using the Ritz method; subsequently, using Hamilton’s variational principle, linear homogeneous algebraic equations in terms of unknown are generated, the set of linear algebraic equations can be solved as an Eigen-value problem. Buckling loads for laminated plates with different combinations of bounda

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 30 2018
Journal Name
Journal Of Engineering
Crack Growth Behavior through Wall Pipes under Impact Loading And Moisten Environment
...Show More Authors

This search concerns study the crack growth in the wall of pipes made of low carbon steel under the impact load and using the effect of moisture (rate of moisture 50%). The environmental conditions were controlled using high accuracy digital control with sensors. The pipe has a crack already. The test was performed and on two type of specimens, one has a length of 100cm and other have length 50cm. The results were, when the humidity was applied to the pipe, the crack would enhance to grow (i.e. the number of cycles needed to grow the crack will reduce). In addition, when the test performed on the specimens of length 50cm the number of cycles needed to grow the crack is increased due to the effect of bending stress on the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Theoretical Analysis Of The Photon Production Rate in the Quark-Gluon Interaction According To The Quantum Cromodynamic QCD Theory
...Show More Authors

           In this work, we have used the QCD dynamic scenario of the quark gluon interaction to investigate and study photon emission theoretically based on quantum theory. The QCD theory is implemented by deriving the photon emission rate equation of the state of ideal QGP at a  chemical potential. The photon rate of the quark-gluon interaction has to be calculated for the anti up-gluon interaction in the g →  γ system at the temperature of system  with critical temperature ( 132.38, ,  and 198.57) MeV and photon energy (  GeV. We investigated a significant effect of critical temperature, strength coupling, and photon energy on the photon rate contribution. Here, the increased photon emission rate and decreased streng

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Free Vibration Analysis of Laminated Composite Plates with General Boundary Elastic Supports Under Initial Thermal Load
...Show More Authors

Free vibration behavior was developed under the ratio of critical buckling temperature of laminated composite thin plates with the general elastic boundary condition. The equations of motion were found based on classical laminated plate theory (CLPT) while the solution functions consists of trigonometric function and a continuous function that is added to guarantee the sufficient smoother of the so-named remaining displacement function at the boundaries, in this research, a modified Fourier series were used, a generalized procedure solution was developed using Ritz method combined with the imaginary spring technique. The influences of many design parameters such as angles of layers, aspect ratio, thickness ratio, and ratio of initial in-

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Engineering
Serviceability of Post-fire RC Rafters with Openings of Different Sizes and Shapes
...Show More Authors

This study deals with the serviceability of reinforced concrete solid and perforated rafters with openings of different shapes and sizes based on an experimental study that includes 12 post-fire non-prismatic reinforced concrete beams (solid and perforated). Three groups were formed based on heating temperature (room temperature, 400 °C, and 700 °C), each group consisting of four rafters (solid, rafters with 6 and 8 trapezoidal openings, and rafter with eight circular openings) under static loading. A developed unified calculation technique for deflection and crack widths under static loading at the service stage has been provided, which comprises non-prismatic beams with or without opening exposed to flexure concentra

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Thu Oct 01 2020
Journal Name
International Journal Of Engineering
Vertical and Lateral Displacement Response of Foundation to Earthquake Loading
...Show More Authors

Risks are confronting the foundations of buildings and structures when exposed to earthquakes which leads to high displacements that may cause the failure of the structures. This research elaborates numerically the effect of the earthquake on the vertical and lateral displacement of footing resting on the soil. The thickness of the footing and depth of soil layer below the footing was taken as (0.5, 1.0, and 2.0 m) and (10, 20 and 40m), respectively. The stiffness ratio of soil to footing was also elaborated at 0.68, 0.8, 1.0, and 1.7. The results showed an increase in the verticle displacement of footing as the duration of the earthquake increases. The increase of soil layer thickness below the footing leads to a reduction in the vertical

... Show More
View Publication
Crossref (1)
Clarivate Crossref
Publication Date
Wed Jun 30 2004
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Theoretical Analysis of Concentric Flow of Spherical Capsule in Laminar Flow
...Show More Authors

View Publication Preview PDF