: Porous silicon (n-PS) films can be prepared by photoelectochemical etching (PECE) Silicon chips n - types with 15 (mA /cm2), in15 minutes etching time on the fabrication nano-sized pore arrangement. By using X-ray diffraction measurement and atomic power microscopy characteristics (AFM), PS was investigated. It was also evaluated the crystallites size from (XRD) for the PS nanoscale. The atomic force microscopy confirmed the nano-metric size chemical fictionalization through the electrochemical etching that was shown on the PS surface chemical composition. The atomic power microscopy checks showed the roughness of the silicon surface. It is also notified (TiO2) preparation nano-particles that were prepared by pulse laser eradication in ethanol (PLAL) technique through irradiation with a Nd:YAG laser pulses TiO2 target that is sunk in methanol using 400 mJ of laser energy. It has been studied the structural, optical and morphological of TiO2NPs.It has been detected that through XRD measurement , (TiO2) NPs have been Tetragonal crystal structure. While with AFM measurements, it has been realized that the synthesized TiO2 particles are spherical with an average particle size in the (82 nm) range. It has been determined that the energy band gap of TiO2 NPs from optical properties and set to be in (5eV) range .The transmittance and reflectance spectra have determined the TiO2 NPs optical constants. It was reported the effectiveness of TiO2 NPs expansion on the PS Photodetector properties which exposes the benefits in (Al/PS/Si/Al). The built-in tension values depend on the etching time current density and laser flounce. Al/TiO2/PS/Si/Al photo-detector heterojunction have two response peaks that are situated at 350 nm and (700 -800nm) with max sensitivity ≈ 0.7 A/W. The maximum given detectivity is 9.38at ≈ 780 nm wavelength.
Copper and Zinc powders with different particle sizes were subjected to sieving of range (20-100?m) and He-Ne laser system to determine the particle size . 1wt% from each powders was blended carefully with 99wt% from Iraqi oil . Microscopic examination were carried for all samples to reveal the particle size distribution . XRF intensity measurements were conducted for all suspended samples , and the relation between XRF intensity and the particle size was found .
Two different composite materials were prepared by stir casting method of AA 6061 alloy as a matrix reinforced with two addition different ceramic materials Al2O3 and B4C of grain size 20 µm by 2.5, 5, 7.5 and10% in weight. The composite material with aluminum alloy as a matrix possesses a unique mechanical properties such as: high specific strength and hardness, low density, and high resistance to corrosion and friction wear. This composite is widely used in automotive parts space and marine applications.
Pin-on-disc technique was used to calculate the wear rate for each addition of Al2O3 and B4C particles. Rockwell hardness test and
... Show MoreIn this paper a stirred-bed performed of the copper catalyzed synthesis of ethylchlorosilanes from silicon and ethyl chloride was described. A Si-catalyst mixture prepared by reaction of CuCl and Si was employed. The compositions of products were mainly ethyltrichlorosilane, diethyldichlorosilane, and ethyldichlorosilane and mainly depended on the extent of Cu in the mixture and the reaction temperature. A promoting effect on the extent of adsorption was observed on the addition of certain additives. The kinetic data revealed the direct depended of the reaction rate on C2H5Cl pressure.
Single-photon detection concept is the most crucial factor that determines the performance of quantum key distribution (QKD) systems. In this paper, a simulator with time domain visualizers and configurable parameters using continuous time simulation approach is presented for modeling and investigating the performance of single-photon detectors operating in Gieger mode at the wavelength of 830 nm. The widely used C30921S silicon avalanche photodiode was modeled in terms of avalanche pulse, the effect of experiment conditions such as excess voltage, temperature and average photon number on the photon detection efficiency, dark count rate and afterpulse probability. This work shows a general repeatable modeling process for significant perform
... Show MoreIn this research, nanofibers have been prepared by using an electrospinning method. Three types of polymer (PVA, VC, PMMA) have been used with different concentration. The applied voltage and the gap length were changed. It was observed that VC is the best polymer than the other types of polymers.
Abstract: In this research, nanofibers have been prepared by using an electrospinning method. Three types of polymer (PVA, VC, PMMA) have been used with different concentration. The applied voltage and the gap length were changed. It was observed that VC is the best polymer than the other types of polymers.
Modern emerged technologies impose development and fabrication of miniatur-ized parts and devices in the micro- and nano-scale. Producing micro- and nano-featured structures requires nonconventional machining processes where con-ventional machining processes such as grinding, milling and eroding have failed. New emerging processes, such laser machining processes, are still fraught with almost invincible processes. Micro-/nano-machining are the pro-cesses of producing parts, microsystems or features at a scale of a few microm-eters and less than one hundred nanometers, respectively. Precise cutting and clean material removal accompanied with a negligible heat affected zone (HAZ), which are usually the characteristics of laser ablation, have
... Show MorePolyaniline films were successfully synthesized in this study using an oxidative polymerization method at temperatures ranging from 0 to 4 ° C. Polyaniline films were deposited using a single step of chemical oxidative polymerization rather than electrochemical polymerization. The polyaniline was examined using FTIR, XRD, SEM, AFM, and Four Point Probe. This result demonstrates that polyaniline synthesized using this method has a uniform morphology, small size (17 to 40) nm, high crystallinity, and high conductivity (9.42 s/cm).