Preferred Language
Articles
/
OxZKE4cBVTCNdQwCPTQI
Wellbore Trajectory Optimization Using Rate of Penetration and Wellbore Stability Analysis
...Show More Authors

Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.

In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation pore pressure, and in-situ stresses of the studied area were included as inputs. The second step was by optimizing the process using a genetic algorithm (GA), as a class of optimizing methods for complex functions, to obtain the maximum ROP along with the related wellbore trajectory (AZI and INC). Finally, the suggested azimuth (AZI) and inclination (INC) are premeditated by considering the results of wellbore stability analysis using wireline logging measurements, core and drilling data from the offset wells.

The results showed that the optimized wellbore trajectory based on wellbore stability analysis was compatible with the results of the genetic algorithm (GA) that used to reach higher ROP. The recommended orientation that leads to maximum ROP and maintains the stability of drilling deviated wells (i.e., inclination ranged between 40°—50°) is parallel to (140°—150°) direction. The present study emphasizes that the proposed methodology can be applied as a cost-effective tool to optimize the wellbore trajectory and to calculate approximately the drilling time for future highly deviated wells.

Crossref
View Publication
Publication Date
Sun Mar 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Optimization of Activated Carbon Preparation from Date Stones by Microwave Assisted K2CO3 Activation
...Show More Authors

The preparation of activated carbon (AC) from date stones by using microwave assisted K2CO3 activation was investigated in this paper. The influence of radiation time, radiation power, and impregnation ratio on the yield and methylene blue (MB) uptake of such carbon were studied. Based on Box-Wilson central composite design, two second order polynomial models were developed to correlate the process variables to the two responses. From the analysis of variance the significant variables on each response were identified. Optimum coditions of 8 min radiation time, 660 W radiation power and 1.5 g/g impregnation ratio gave 460.123 mg/g MB uptake and 19.99 % yield. The characteristics of the AC were examined by pore structure analysis, and scan

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 12 2019
Journal Name
Al-khwarizmi Engineering Journal
Optimization Drilling Parameters of Aluminum Alloy Based on Taguchi Method
...Show More Authors

This paper focuses on the optimization of drilling parameters by utilizing “Taguchi method” to obtain the minimum surface roughness. Nine drilling experiments were performed on Al 5050 alloy using high speed steel twist drills. Three drilling parameters (feed rates, cutting speeds, and cutting tools) were used as control factors, and L9 (33) “orthogonal array” was specified for the experimental trials. Signal to Noise (S/N) Ratio and “Analysis of Variance” (ANOVA) were utilized to set the optimum control factors which minimized the surface roughness. The results were tested with the aid of statistical software package MINITAB-17. After the experimental trails, the tool diameter was found as the most important facto

... Show More
View Publication Preview PDF
Crossref (15)
Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Study the Relationship between Beta Decay Stability of Nuclide and its Shape for Some even-even Isobars
...Show More Authors

The aim of this work is to learn the relationship of the stability of (β) emitter isobars with their shape for some isobaric elements with even mass number (A=152 - 162). To reach this goal firstly the most stable isobar have been determined by plotting mass parabola (plotting the binding energy (B.E) as a function of the atomic number (Z)) for each isobaric family. Then three-dimensional representation graphics for each nucleus in these isobaric families have been plotted to illustrate the deformation in the shape of a nucleus. These three-dimensional representation graphics prepared by calculating the values of semi-axis minor (a), major (b) and (c) ellipsoid axis’s. Our results show that the shape of nuclides which is represented the

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Optimization Algorithms Based on Path Planning and Neural Controller for Mobile Robot
...Show More Authors

In this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Sep 26 2019
Journal Name
Processes
Fine-Tuning Meta-Heuristic Algorithm for Global Optimization
...Show More Authors

This paper proposes a novel meta-heuristic optimization algorithm called the fine-tuning meta-heuristic algorithm (FTMA) for solving global optimization problems. In this algorithm, the solutions are fine-tuned using the fundamental steps in meta-heuristic optimization, namely, exploration, exploitation, and randomization, in such a way that if one step improves the solution, then it is unnecessary to execute the remaining steps. The performance of the proposed FTMA has been compared with that of five other optimization algorithms over ten benchmark test functions. Nine of them are well-known and already exist in the literature, while the tenth one is proposed by the authors and introduced in this article. One test trial was shown t

... Show More
View Publication Preview PDF
Scopus (26)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Thu Mar 23 2023
Journal Name
Journal Of Applied Science And Engineering
Strong Fenchel Duality for Evenly Convex Optimization Problems
...Show More Authors

Among a variety of approaches introduced in the literature to establish duality theory, Fenchel duality was of great importance in convex analysis and optimization. In this paper we establish some conditions to obtain classical strong Fenchel duality for evenly convex optimization problems defined in infinite dimensional spaces. The objective function of the primal problem is a family of (possible) infinite even convex functions. The strong duality conditions we present are based on the consideration of the epigraphs of the c-conjugate of the dual objective functions and the ε-c-subdifferential of the primal objective functions.

View Publication
Scopus (1)
Scopus Clarivate
Publication Date
Sun Oct 29 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Optimization Techniques for Human Multi-Biometric Recognition System
...Show More Authors

Researchers are increasingly using multimodal biometrics to strengthen the security of biometric applications. In this study, a strong multimodal human identification model was developed to address the growing problem of spoofing attacks in biometric security systems. Through the use of metaheuristic optimization methods, such as the Genetic Algorithm(GA), Ant Colony Optimization(ACO), and Particle Swarm Optimization (PSO) for feature selection, this unique model incorporates three biometric modalities: face, iris, and fingerprint. Image pre-processing, feature extraction, critical image feature selection, and multibiometric recognition are the four main steps in the workflow of the system. To determine its performance, the model wa

... Show More
View Publication
Crossref
Publication Date
Thu Jun 16 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Optimization algorithms for transportation problems with stochastic demand
...Show More Authors

The purpose of this paper is to solve the stochastic demand for the unbalanced transport problem using heuristic algorithms to obtain the optimum solution, by minimizing the costs of transporting the gasoline product for the Oil Products Distribution Company of the Iraqi Ministry of Oil. The most important conclusions that were reached are the results prove the possibility of solving the random transportation problem when the demand is uncertain by the stochastic programming model. The most obvious finding to emerge from this work is that the genetic algorithm was able to address the problems of unbalanced transport, And the possibility of applying the model approved by the oil products distribution company in the Iraqi Ministry of Oil to m

... Show More
View Publication
Scopus (15)
Crossref (7)
Scopus Crossref
Publication Date
Sun Dec 30 2018
Journal Name
Journal Of Pure And Applied Microbiology
Mixture Design of Experiments for the Optimization of Carbon Source for Promoting Undecylprodigiosin and Actinorhodin Production
...Show More Authors

View Publication
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
A Spike Neural Controller for Traffic Load Parameter with Priority-Based Rate in Wireless Multimedia Sensor Networks
...Show More Authors

Wireless Multimedia Sensor Networks (WMSNs) are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to   produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC). The Modify Spike Neural Network controller (MSNC) can calculate the appropriate traffi

... Show More
View Publication Preview PDF