This study examines the removal of ciprofloxacin in an aqueous solution using green tea silver nanoparticles (Ag-NPs). The synthesized Ag-NPs have been classified by the different techniques of SEM, AFM, BET, FTIR, and Zeta potential. Spherical nanoparticles with average sizes of 32 nm and a surface area of 1.2387m2/g are found to be silver nanoparticles. The results showed that the ciprofloxacin removal efficiency depends on the initial pH (2.5-10), CIP (2-15 mg/L), temperature (20-50°C), time (0-180 min), and Ag-NPs dosage (0.1-1g/L). Batch experiments revealed that the removal rate with ratio (1:1) (w/w) were 52%, and 79.8% of the 10 mg/L of CIP at 60, and 180 minutes, respectively with optimal pH=4. Kinetic models for adsorption and ciprofloxacin mechanism removal were also investigated, and kinetic analyzes showed adsorption to be a 3.8727kJ.mol-1 activation energy physical adsorption mechanism. The kinetic removal process, due to the low activation energy of 14.0606kJ.mol-1, is preferred the model of first-order after a physical diffusion-controlled reaction. Adsorption information from Langmuir, Freundlich, Temkin, and Dubinin models was followed, and the Dubinin isotherm model was the best-fitted model. the thermodynamic parameter ?G0 values at 20, 30, 40 and 50°C were (0.5163, -0.0691, -0.9589, -0.5927kJ/mol). The value of ?H0 and ?S0 were (12.713kJ/mol and 0.0422073kJ/mol.k) which indicated favorable and endothermic sorption. The presence and concentration of CIP in aqueous media were identified through UV analysis.
Mesoporous silica (MPS) nanoparticle was prepared as carriers for drug delivery systems by sol–gel method from sodium silicate as inexpensive precursor of silica and Cocamidopropyl betaine (CABP) as template. The silica particles were characterized by SEM, TEM, AFM, XRD, and N2adsorption–desorption isotherms. The results show that the MPS particle in the nanorange (40-80 nm ) with average diameter equal to 62.15 nm has rods particle morphology, specific surface area is 1096.122 m2/g, pore volume 0.900 cm3/g, with average pore diameter 2.902 nm, which can serve as efficient carriers for drugs. The adsorption kinetic of Ciprofloxacin (CIP) drug was studied and the data were analyzed and found to match well with
... Show MoreIn this research, the efficiency of low-cost unmodified wool fibers were used to remove zinc ion from industrial wastewater. Removal of zinc ion was achieved at 99.52% by using simple wool column. The experiment was carried out under varying conditions of (2h) contact time, metal ion concentration (50mg/l), wool fibers quantity to treated water (70g/l), pH(7) & acid concentration (0.05M). The aim of this method is to use a high sensitive, available & cheep natural material which applied successfully for industrial wastewater& synthetic water, where zinc ion concentration was reduced from (14.6mg/l) to (0.07mg/l) & consequently the hazardous effect of contamination was minimized.
The current study was designed to remove Lead, Copper and Zinc from industrial wastewater using Lettuce leaves (Lactuca sativa) within three forms (fresh, dried and powdered) under some environmental factors such as pH, temperature and contact time. Current data show that Lettuce leaves are capable of removing Lead, Copper and Zinc ions at significant capacity. Furthermore, the powder of Lettuce leaves had highest capability in removing all metal ions. The highest capacity was for Lead then Copper and finally Zinc. However, some examined factors were found to have significant impacts upon bioremoval capacity of studied ions, where best biosorption capacity was found at pH 4, at temperature 50º C and contact time of 1 hour.
As a well-known oral and intravenous antifungal, voriconazole (VRN) has an extensive history of usage in the medical field. Solid lipid nanoparticles (SLNs) have been produced to treat ocular fungal keratitis in the eye. A 32Box-behnken design was used to produce a variety of new formulas for hot-melt extrusion. The SLNs were evaluated by entrapment efficiency (EE percent), particle size (PS), polydispersity index (PDI), and zeta potential (ZP). A series of in-vitro and in-vivo studies were carried out on the new formula. The produced vesicles’ EE, PS, PDI, and ZP values were all good. SLNs eye drops were numerically adjusted to include carbopol, a stabilizer, lipids, and a surfactant, among other substances. ZP of -36.5 ± 0.20 m
... Show MoreBackground: The beneficial gut bacterium E. coli can cause blood poisoning, diarrhoea, and other gastrointestinal and systemic disorders. Objective: This study amid to examines the antibiofilm activity of Laurus nobilis leaves extract on E. coli isolates and compares pre- and post-treatment gene expression of fimA and papC genes. Subjects and Methods: Ten isolates of E. coli were obtained from the Genetic Engineering and Biotechnology Institute, University of Baghdad, which was previously collected from Baghdad city hospitals and diagnosed by chemical tests, the diagnosis was confirmed using VITEK-2 System. The preparation of the aqueous and methanolic Laurus nobilis leaves extracts was done by using the maceration method and Soxhlet appara
... Show MoreKE Sharquie, AA Noaimi, MM Al-Salih, Saudi Medical Journal, 2008 - Cited by 56
S Khalifa E, N Adil A, AS Mazin M…, 2008
The adsorption of copper ions onto produced activated carbon from banana peels (with particle size 250 µm) in a single component system with applying magnetic field has been studied using fixed bed adsorber. The fixed bed breakthrough curves for the copper ions were investigated. The adsorption capacity for Cu (II) was investigated. It was found that 1) the exposure distance (E.D) and strength of magnetic field (B), affected the degree of adsorption; and 2) experiments showed that removal of Cu ions and accumulative adsorption capacity of adsorbent increase as the exposure distance and strength of magnetic field increase.