This study examines the removal of ciprofloxacin in an aqueous solution using green tea silver nanoparticles (Ag-NPs). The synthesized Ag-NPs have been classified by the different techniques of SEM, AFM, BET, FTIR, and Zeta potential. Spherical nanoparticles with average sizes of 32 nm and a surface area of 1.2387m2/g are found to be silver nanoparticles. The results showed that the ciprofloxacin removal efficiency depends on the initial pH (2.5-10), CIP (2-15 mg/L), temperature (20-50°C), time (0-180 min), and Ag-NPs dosage (0.1-1g/L). Batch experiments revealed that the removal rate with ratio (1:1) (w/w) were 52%, and 79.8% of the 10 mg/L of CIP at 60, and 180 minutes, respectively with optimal pH=4. Kinetic models for adsorption and ciprofloxacin mechanism removal were also investigated, and kinetic analyzes showed adsorption to be a 3.8727kJ.mol-1 activation energy physical adsorption mechanism. The kinetic removal process, due to the low activation energy of 14.0606kJ.mol-1, is preferred the model of first-order after a physical diffusion-controlled reaction. Adsorption information from Langmuir, Freundlich, Temkin, and Dubinin models was followed, and the Dubinin isotherm model was the best-fitted model. the thermodynamic parameter ?G0 values at 20, 30, 40 and 50°C were (0.5163, -0.0691, -0.9589, -0.5927kJ/mol). The value of ?H0 and ?S0 were (12.713kJ/mol and 0.0422073kJ/mol.k) which indicated favorable and endothermic sorption. The presence and concentration of CIP in aqueous media were identified through UV analysis.
The complexity of multimedia contents is significantly increasing in the current world. This leads to an exigent demand for developing highly effective systems to satisfy human needs. Until today, handwritten signature considered an important means that is used in banks and businesses to evidence identity, so there are many works tried to develop a method for recognition purpose. This paper introduced an efficient technique for offline signature recognition depending on extracting the local feature by utilizing the haar wavelet subbands and energy. Three different sets of features are utilized by partitioning the signature image into non overlapping blocks where different block sizes are used. CEDAR signature database is used as a dataset f
... Show MoreImage Fusion Using A Convolutional Neural Network
Smart water flooding (low salinity water flooding) was mainly invested in a sandstone reservoir. The main reasons for using low salinity water flooding are; to improve oil recovery and to give a support for the reservoir pressure.
In this study, two core plugs of sandstone were used with different permeability from south of Iraq to explain the effect of water injection with different ions concentration on the oil recovery. Water types that have been used are formation water, seawater, modified low salinity water, and deionized water.
The effects of water salinity, the flow rate of water injected, and the permeability of core plugs have been studied in order to summarize the best conditions of low salinity
... Show MoreThe proliferation of cellular network enabled users through various positioning tools to track locations, location information is being continuously captured from mobile phones, created a prototype that enables detected location based on using the two invariant models for Global Systems for Mobile (GSM) and Universal Mobile Telecommunications System (UMTS). The smartphone application on an Android platform applies the location sensing run as a background process and the localization method is based on cell phones. The proposed application is associated with remote server and used to track a smartphone without permissions and internet. Mobile stored data location information in the database (SQLite), then transfer it into location AP
... Show MoreUsed automobile oils were subjected to filtration to remove solid material and dehydration to remove water, gasoline and light components by using vacuum distillation under moderate pressure, and then the dehydrated waste oil is subjected to extraction by using liquid solvents. Two solvents, namely n-butanol and n-hexane were used to extract base oil from automobile used oil, so that the expensive base oil can be reused again.
The recovered base oil by using n-butanol solvent gives (88.67%) reduction in carbon residue, (75.93%) reduction in ash content, (93.73%) oil recovery, (95%) solvent recovery and (100.62) viscosity index, at (5:1) solvent to used oil ratio and (40 oC) extraction temperature, while using n-hexane solvent gives (6
Electrospinning is a novel technique that can be used to produce highly porous fibers with highly tunable properties. In this research, this technique is adopted to prepare the electrospun nanofiber membrane for membrane distillation application. A custom-built electrospinning setup was made to prepare the nanofibers membrane. Polyvinylidene fluoride (PVDF) polymer was used in the electrospinning process due to its high hydrophobicity. Electrospun (PVDF) nanofibers were tested in direct contact membrane distillation (DCMD) process using 0.6 M sodium chloride as a feed solution. The resulting nanofiber membrane exhibited high performance in DCMD (i.e. relatively high water flux and high salt rejection). It has been found
... Show MoreFace Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a
... Show MoreRecognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),
... Show MoreDocument analysis of images snapped by camera is a growing challenge. These photos are often poor-quality compound images, composed of various objects and text; this makes automatic analysis complicated. OCR is one of the image processing techniques which is used to perform automatic identification of texts. Existing image processing techniques need to manage many parameters in order to clearly recognize the text in such pictures. Segmentation is regarded one of these essential parameters. This paper discusses the accuracy of segmentation process and its effect over the recognition process. According to the proposed method, the images were firstly filtered using the wiener filter then the active contour algorithm could b
... Show More