Gold, silver and nickel used as electrodes in the fabrication of perovskite solar cell by using thermal evaporation deposition method with direct structure FTO\ TiO2\ MAPbI3\ spiro-MeOTAD\ metal electrode. The cell efficiency was compared between the electrodes material as a function of time to explaining the effect of these metals electrode on cell performance, X-ray diffraction pattern showed that the samples that contain gold and nickel do not contain a compound indicating the interaction of the metal with the components of the cell or the formation of a new compound, while in the cell containing silver it was found that silver iodide is formed after the passage of time. Under standard AM1.5 illumination, the device shows a power conversion efficiency of 4.42%, 3.50%, and 1.61% for Au, Ni and Ag electrodes respectively. Devices with Au and Ni give same behaviours where reduce efficiency after 7day to 20% but for Ag reduce efficiency to 80%. The results revealed that, Nickel can become the best choice as an electrode for the perovskite solar cell in terms of price and efficiency approach to gold.
Been in this gravel study the effect of Alchgag fast neutrons emitted by the source on the electrical properties of silicon solar cells monounsaturated crystal at a constant rate of neutron flow rate of a wide range of neutron flow speed ranges for periods of time ranging from 2-10 hours
Under atmospheric pressure, an argon plasma stream was sustained and its plasma characteristics were examined. The emission spectra of plasma created in a plasma jet system using argon gas were observed for three metals (Ag, Zn, and Cu) for the anode and varied flow rates ranging from 1–4 L/min. at constant voltage, and normal atmospheric pressure. The spectral lines of excited Ar, Ag, Zn, and Cu species were identified at a wavelength of (650–900) nm .The Debye length, sphere, and temperature of an electron are all measured. Optical emission spectrometer (OES) equipment was used to capture the spectrum produced by the plasma at various argon gas flow rates.The temperature and density of the electron (Te) and (n
... Show MoreSolar energy has significant advantages compared to conventional sources such as coal and natural gas, including no emissions, no need for fuel, and the potential for installation in a wide range of locations with access to sunlight. In this investigation, heterocyclic derivatives were synthesized from several porphyrin derivatives (4,4',4",4"'-(porphyrin-5,10,15,20-tetrayl) tetra benzoic acid) compound (3), obtained by reaction Pyrrole with 4-formyl benzoic acid. Subsequently, porphyrin derivative-component amides 5a, 5b, and 5c were produced by reacting compound (3) with amine derivatives at a 1:4 molar ratio. These derivatives exhibited varying sensitivities for utilization in solar cells, with compound 5a displaying the highest power
... Show MoreThin film solar cells are preferable to the researchers and in applications due to the minimum material usage and to the rising of their efficiencies. In particular, thin film solar cells, which are designed based one transition metal chalcogenide materials, paly an essential role in solar energy conversion market. In this paper, transition metals with chalcogenide Nickel selenide termed as (NiSe2/Si) are synthesized. To this end, polycrystalline NiSe2 thin films are deposited through the use of vacuum evaporation technique under vacuum of 2.1x10-5 mbar, which are supplied to different annealing temperatures. The results show that under an annealed temperature of 525 K,
... Show MoreCopper Phthalocyanine (CuPc) thin film with and without multi-walled carbon nanotubes (MWCNTs) is prepared using the solution based method and used in gas sensor and solar cell applications. The structural characteristics of the CuPc thin films showed a single peak around 7o with the preferred orientation for charge transportation. Using atomic force microscopy (AFM), morphological properties show a rough surface with some aggregates and ribbons. The optical absorption properties were determined using UV-Visible absorption spectroscopy; the optical band gap has varied after adding MWCNTs to CuPc. Electrical conductivity of CuPc:MWCNTs composite is higher than that of the pure CuPc. The CuPc thin film sensr have sh
... Show MoreComplexes of Au (III), Pd (II), Pt (IV ) and Rh(III) with S–propynyle-2- thiobenzimidazole (BENZA) have been prepared and characterized by IR and UV- Visible spectral methods in addition to magnetic and conductivity measurements and micro–elemental analysis (CHN).The probable structures of the new complexes have been suggested.
Complexes of Au(III) ,Pd (II) , Pt (IV ) and Rh(III) with S – propynyle -2- thiobenzimidazole (BENZA) have been prepared and characterized by IR and UV- Visible spectral methods in addition to magnetic and conductivity measurements and micro – elemental analysis (CHN).The probable structures of the new complexes have been suggested.
The aim of the present work to study the effect of changing velocity (Reynold's number) on oxygen cathodic polarization using brass rotating cylinder electrode in 0.1, 0.3 and 0.5N NaCl solutions (PH = 7) at temperatures 40, 50 and 600 C. Cathodic polarization experiments were conducted as a function of electrode rotational speed and concentration.
Nanoparticles of Pb1-xCdxS within the composition of 0≤x≤1 were prepared from the reaction of aqueous solution of cadmium acetate, lead acetate, thiourea, and NaOH by chemical co-precipitation. The prepared samples were characterized by UV-Vis spectroscopy(in the range 300-1100nm) to study the optical properties, AFM and SEM to check the surface morphology(Roughness average and shape) and the particle size. XRD technique was used to determine the crystalline structure, XRD technique was used to determine the purity of the phase and the crystalline structure, The crystalline size average of the nanoparticles have been found to be 20.7, 15.48, 11.9, 11.8, and 13.65 nm for PbS, Pb0.75Cd0.25S,
... Show More