Gold, silver and nickel used as electrodes in the fabrication of perovskite solar cell by using thermal evaporation deposition method with direct structure FTO\ TiO2\ MAPbI3\ spiro-MeOTAD\ metal electrode. The cell efficiency was compared between the electrodes material as a function of time to explaining the effect of these metals electrode on cell performance, X-ray diffraction pattern showed that the samples that contain gold and nickel do not contain a compound indicating the interaction of the metal with the components of the cell or the formation of a new compound, while in the cell containing silver it was found that silver iodide is formed after the passage of time. Under standard AM1.5 illumination, the device shows a power conversion efficiency of 4.42%, 3.50%, and 1.61% for Au, Ni and Ag electrodes respectively. Devices with Au and Ni give same behaviours where reduce efficiency after 7day to 20% but for Ag reduce efficiency to 80%. The results revealed that, Nickel can become the best choice as an electrode for the perovskite solar cell in terms of price and efficiency approach to gold.
In this work, pure and Ag-doped nickel oxide (NiO) thin films were deposited on glass substrates with different dopant concentrations (0.1, 0.2, 0.3 and 0.4 wt.%) by pulsed-laser deposition (PLD) technique at room temperature. These films were annealed at temperature of 450 °C. The structural and optical properties of the prepared thin films were studied. It was found that annealing process has lead to increase the transmittance of the deposited films. Also, the transmittance was found to increase with doping concentration of silver in the deposited NiO films. The optical energy gap was decreased from 3.5 to 3.2 eV as the doping concentration was increased to 0.4 %.
A number of ehemical ion materials were used as an absorber against solar energy. These materials were selected according to their absorption spectra in the wavelength range 300-800nm where the solar spectrum is coventrated. A solar olleetorw^esigd and The ability of each material inside the collector for absorbing the solar radiation was examined by a converter parameter “R”.According to the “R” parameter, the cohaltous and copperic ions material seems to be of higher capability for absorbing solar energy than the other materials.All the results were analyzed by means of a least-squared fitting program.
The present study was invistigated to show the bioaccumulation of some heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) by use Aquatic plant Myriophyllum verticilatum growing in Euphrates river between Spring 2004 to Winter 2005, and these heavy maters was studied in Dissolved and particulat phase of water and exchangable and residual phase of sediment. Heavy metals accumulated according the system water-sediment-aquatic plant, and recorded bioaccumulation factor 1.010, 0.005, 0.009, 0.011, 0.012, 0.010, 0.010, 0.010, 0.011, respectively.
The experiment was conducted to study the effect of leaves extract of Salvia sclarea , Rosmarinus officinalis and Thymus vulgaris with 10% and 30% concentration on germination of seeds and growth of seedlings . The effect of these extracts on infection percentage of seeds decay and surface growth of Rhizoctonia solani . The results showed that the three extracts effected significantly to reduced percentage of seeds germination, acceleration of germination , promoter indicator , infection percentage of seeds decay and surface growth of R. solani especially in 30% concentration .
The drying process is considered an effective technique for preserving foods and agricultural products from spoilage. Moreover, the drying process lessens the products' weight, volume, and packaging, which prompts a reduction in the products' transportation costs. The drying technique with solar energy represents an ancient method, still alluring due to solar energy abundance and cost‐effectiveness. In this article, the previous manuscripts concerned with studying and analyzing indirect solar dryer systems that utilize innovative solar air heaters (SAHs) are reviewed. The results and conclusions are discussed intensively to clarify the significance of utilizing this type of drying technique. The ef
This article reviews the construction of organic solar cell (OSC) and characterized their optical and electrical properties, where indium tin oxide (ITO) used as a transparent electrode, “Poly (3-hexylthiophene- 2,5-diyl) P3HT / Poly (9,9-dioctylfluorene-alt-benzothiadiazole) F8BT” as an active layer and “Poly(3,4-ethylenedioxythiophene)-poly (styrene sulfonate)” PEDOT: PSS which is referred to the hole transport layer. Spin coating technique was used to prepared polymers thin film layers under ambient atmosphere to make OSC. The prepared samples were characterized after annealing process at (80 ͦ C) for (30 min) under non-isolated circumference. The results show a value of filling factor (FF) of (2.888), (0.233) and (0.28
... Show MoreResults: it was found that labelled cells participated in the formation of myotubes, which formed mature muscle fibers, and possibly new satellite cells. The results of this experiment may eventually revolutionized therapeutic procedures for some form of muscle diseases