Gold, silver and nickel used as electrodes in the fabrication of perovskite solar cell by using thermal evaporation deposition method with direct structure FTO\ TiO2\ MAPbI3\ spiro-MeOTAD\ metal electrode. The cell efficiency was compared between the electrodes material as a function of time to explaining the effect of these metals electrode on cell performance, X-ray diffraction pattern showed that the samples that contain gold and nickel do not contain a compound indicating the interaction of the metal with the components of the cell or the formation of a new compound, while in the cell containing silver it was found that silver iodide is formed after the passage of time. Under standard AM1.5 illumination, the device shows a power conversion efficiency of 4.42%, 3.50%, and 1.61% for Au, Ni and Ag electrodes respectively. Devices with Au and Ni give same behaviours where reduce efficiency after 7day to 20% but for Ag reduce efficiency to 80%. The results revealed that, Nickel can become the best choice as an electrode for the perovskite solar cell in terms of price and efficiency approach to gold.
Computer theoretical study has been carried out on the design of five electrode immersion electrostatic lens used in electron gun application. The finite element method (FEM) is used in the solution of the Poisson's equation fro determine axial potential distribution, the electron trajectory under Zero magnification condition . The optical properties : focal length ,spherical and chromatic aberrations are calculated,From studying the properties of the designed electron gun. we have good futures for these electron gun where are abeam current 4*10-4A can be supplied by using cathode tip of radius 100 nm.
Cu-Al-Ni shape memory alloy specimens has been fabricated using powder metallurgy technique with tube furnace and vacuum sintering environment , three range of Nb powder weight percentage (0.3,0.6,0.9)% has been added. Micro hardness and sliding wear resist has been tested followed by X-ray diffraction, scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDX) for micro structure observation. The experimental test for the samples has showed that the increase of Nb powder weight percentage in the master alloy has a significant effect on increasing the hardness and decreasing the wear resist therefore it will enhance the mechanical properties for this alloy.
Mn(II), Co(II), Ni(II), Cu(II), and Cr(III) metal complexes with the ligand (L) [3-(2nitro benzylidene) amino-2-thioxoimidazolidin-4-one] have been prepared and characterized in their solid state using the elemental micro analysis (C.H.N.S), flame atomic absorption, UV-Vis spectroscopy, FT-IR, magnetic susceptibility measurements, and electrical molar conductivity. The ratio of metal to ligand [M:L] was got for all complexes in the ethanol by using the molar ratio method, which produced comparable results with those results obtained for the solid complexes. From the data of all techniques, octahedral geometry was proposed for Cr(III), Mn(II), and Co(II) complexes, while tetrahedral structure was proposed for Ni(II), Cu(II) complexes.
Background: Moringa peregrina Forssk is a well-known plant in ethnomedicine due to its widespread uses in various diseases like cough, wound healing, rhinitis, fever, and detoxification. The plant seeds contain compounds that are cytotoxic to many cancer cells. During the therapeutic use of plants via the oral route, some compounds present in the plants may be cytotoxic to normal cell lines and red blood cells. Objective: This study was the first report of investigation of the cytotoxic profile on oral cancer, CAL 27, cell line, and hemolytic activities on human erythrocytes of Moringa peregrina seeds ethanolic extract (MPSE). Methods: MPSE was screened for its cytotoxic effect against oral cancer, CAL 27, cell line using 3-(4, 5-di
... Show MoreThe optimum process conditions of the electrochemical deposition of carbon nanotubes (CNT) have been established by using developed, cheap and simple system. It has been found that temperature affects on the rate, purity and the yield of CNT obtained in this process. The electrochemical behavior of CNT deposition, kinetic and thermodynamic parameters were also discussed.
Ge-Au infrared photoconductive detection was prepared from germanium single crystal which were doped with different gold concentration using thermal evaporation. The spectral resonsivity (Rλ), spectral detectivity (D*) were determined as function of wavelength, also the resistance, conductivity in dark and with illumination to infrared radiation, the gain and relative photo response have been measured with different gold concentration. Remarkable improvements in the photoresponse gain were observed for the highest resistance specimen at the expense of spectral detectivity values.
Copper indium disulphide, CuInS2, is a promising absorber material for thin film photovoltaic which has recently attracted considerable attention due to its suitability to reach high efficiency solar cells by using low cost techniques. In this work CuInS2 thin films have been deposited by chemical spray pyrolysis onto glass substrates at ambient atmosphere, using different [Cu]/[In] ratio in the aqueous solutions at substrate temperature 3000C
and different annealing temperatures . Structural and optical properties of CIS films were analyzed by X-ray diffraction, and optical spectroscopy. Sprayed CIS films are polycrystalline with a chalcopyrite structure with a preferential orientation along the 112 direction and no remains of oxides
Aluminum doped zinc selenide ZnSe/n-Si thin films of (250∓20 nm) thickness with (0.01, 0.02 and 0.03), are depositing on the two type of substrate (glass and n-Si) to manufacture (ZnSe/n-Si) solar cell through using thermal vacuum evaporation procedure. physical and optoelectronic properties were examined for the samples. X-Ray and AFM techniques are using to study the structure properties. The energy band gap of as-deposited ZnSe thin films for changed dopant ratio were ranging from (2.6-2.68 eV). The results of Hall effect show that pure and doping films were (p-type), and the concentration carriers and the carriers mobility increases with increase Al-dopant ratio. The (C-V) have shown that the heterojunction were of abrupt type. In add
... Show MoreIn this research study the effect of irradiation by (CW) CO2 laser on some optical properties of (Cds) doping by Ni thin films of (1)µm thickness has been prepared by heat evaporation method. (X-Ray) diffraction technique showed the prepared films before and after irradiation are ploy crystalline hexagonal structure, optical properties were include recording of absorbance spectra for prepared films in the range of (400-1000) nm wave lengths, the absorption coefficient and the energy gap were calculated before and after irradiation, finally the irradiation affected (CdS) thin films by changing its color from the Transparent yellow to dark rough yellow and decrease the value absorption coefficient also increase the value of energy gap.
« Dans la mesure où le texte théâtral est essentiellement non linéaire mais tabulaire, le personnage est un élément décisif de la verticalité du texte ; il est ce qui permet d’unifier la dispersion des signes simultanés. Le personnage figure alors dans l’espace textuel ce point de croisement ou plus exactement de rabattement du paradigme sur le syntagme : il est un lieu proprement poétique. Dans le domaine de la représentation, il apparaît ce point d’ancrage où s’unifie la diversité des signes »[1]
Quel est le personnage dans le théâtre ? Et comment est-il considéré dans le cadre de la sémiologie de théâtre ? Autour de ces deux quest
... Show More