Photobiomodulation (PBM) is a form of the use of visible red and Near-infrared (NIR) light at low power, where a laser light photon is absorbed at the electronic level, without heat production. PBM can be applied in wide range of treatment to help the wound, inflammation, edema, and pain reduction. However, there is a lack of scientific documentation regarding its actual effects. Objectives: This study assesses the impact of PBM on the release of M1-related cytokine in monocyte cells with particular emphasis on interleukin-1β (IL-1β) and Tumour Necrosis Factor α (TNF-α). Methods: Tamm-Horsfall Protein 1 (THP-1) macrophages M1 cells have been exposed to the light from the diode laser of 850nmat different doses (0, 0.6, 1.2 and 3.6 J/cm2). The release of cytokines was determined by enzyme-linked immunosorbent assay, after different periods of incubation (0, 12, 24, and 48 hours) post-irradiation. The proliferation of fibroblast cells suspended in irradiated M1-supernatent was evaluated for the same periods of incubation. Results: The results showed that PBM significantly enhanced M1-related cytokine release (p < 0.05). Obviously, IL-1β increased post-irradiation at 1.2 J/cm2 more than other doses for all incubation periods. TNF-α was decreased significantly after two days of irradiation (p < 0.005) for all doses. A significant increase in fibroblast proliferation (p < 0.005) was observed concomitant with the boost of cytokine release. Conclusion: This in vitro study has demonstrated that the PBM of the 850 nm diode laser therapy can enhance M1-related cytokine release, which in turn increases the proliferation of fibroblast cells. Moreover, PBM at 850 nm plays an anti-inflammatory role, which manifested by decreasing the level of TNF-α. Therefore, this therapy may be able to accelerate the wound healing process.
This paper presents the effect of relativistic and ponderomotive nonlinearity on cross-focusing of two intense laser beams in a collisionless and unmagnetized plasma. It should be noted here that while considering the self-focusing due to relativistic electron mass variation, the electron ponderomotive density depression in the channel may also be important. Therefore/these two nonlinearties may simultaneously affect the self-focusing process. These nonlinearities depend not only on the intensity of one laser but also on the second laser. Therefore, one laser beam affects the dynamics of the second beam and hence the process of cross-focusing takes place. The electric field amplitude of the excited electron plasma wave (EPW) has been cal
... Show MoreBackground: The anticancer impact of Epigallocatechin gallate (EGCG) the highly active polyphenol of green tea was abundantly studied. Though, the exact mechanism of its cytotoxicity is still under investigation. Objectives: Hence, the current study designed to investigate the molecular target of EGCG in HepG2 cells on thirteen autophagy- and/or apoptosis- related genes. Methods: The apoptosis detection analyses such as flow cytometry and dual apoptosis assay were used. The genes expression profile was explored by the real-time quantitative-PCR. Results: EGCG increases G0/G1 cell cycle arrest and the real-time apoptosis markers proteins leading to stimulate apoptos
... Show MoreSuperconducting thin films of Bi1.6Pb0.4Sr2Ca2Cu2.2Zn0.8O10 system were prepared by depositing the film onto silicon (111) substrate by pulsed laser deposition. Annealing treatment and superconducting properties were investigated by XRD and four probe resistivity measurement. The analysis reveals the evolution of the minor phase of the films 2212 phase to 2223 phase, when the film was annealed at 820 °C. Also the films have superconducting behavior with transition temperature ≥90K.
Lasers has been proved to increase tissue oxygenation, activate marrow progenitor cells, expanse the microcirculation, accelerate the restoration of functions, stimulate adaptation ability and stabilization of the hormonal status. The semisolid tissue present in the epiphysis of the bone where it’s structure is spongy or cancellous is bone marrow and it formed about 4% of body weight, the marrow is composed of hemopoietic cells, however, the structure of the marrow is of both cellular and non – cellular components. The hemopoietic stem cells are responsible of producing white blood cells, red corpuscles, platelets in addition to the fibroblasts, macrophages, adipocytes, osteoblast
A fast laser texturing technique has been utilized to produce micro/nano surface textures in Silicon by means of UV femtosecond laser. We have prepared good absorber surface for photovoltaic cells. The textured Silicon surface absorbs the incident light greater than the non-textured surface. The results show a photovoltaic current increase about 21.3% for photovoltaic cell with two-dimensional pattern as compared to the same cell without texturing.
It is well known that sonography is not the first choice in detecting early breast tumors. Improving the resolution of breast sonographic image is the goal of many workers to make sonography a first choice examination as it is safe and easy procedure as well as cost effective. In this study, infrared light exposure of breast prior to ultrasound examination was implemented to see its effect on resolution of sonographic image. Results showed that significant improvement was obtained in 60% of cases.
CdO:NiO/Si solar cell film was fabricated via deposition of CdO:NiO in different concentrations 1%, 3%, and 5% for NiO thin films in R.T and 723K, on n-type silicon substrate with approximately 200 nm thickness using pulse laser deposition. CdO:NiO/n-Si solar cell photovoltaic properties were examined under 60 mW/cm2 intensity illumination. The highest efficiency of the solar cell is 2.4% when the NiO concentration is 0.05 at 723K.
Zinc Oxide (ZnO) thin films of different thickness were prepared
on ultrasonically cleaned corning glass substrate, by pulsed laser
deposition technique (PLD) at room temperature. Since most
application of ZnO thin film are certainly related to its optical
properties, so the optical properties of ZnO thin film in the
wavelength range (300-1100) nm were studied, it was observed that
all ZnO films have high transmittance (˃ 80 %) in the wavelength
region (400-1100) nm and it increase as the film thickness increase,
using the optical transmittance to calculate optical energy gap (Eg
opt)
show that (Eg
opt) of a direct allowed transition and its value nearly
constant (~ 3.2 eV) for all film thickness (150
The objective of this study is to demonstrate the corrosion behavior of dental alloys Co-Cr-Mo, Ni-Cr-Mo and Ti-Al-V in artificial saliva at pH=4 and 37oC enriched with ethyl alcohol at 8% percentage. The linear and cyclic polarizations were investigated by electrochemical measurements. Laser surface modification was achieved for the three dental alloys to improve corrosion resistance. The results show that corrosion resistance of Co-Cr-Mo and Ni-Cr-Mo alloys only were increased after laser treatment due to the fact that laser radiation has caused a smoother surface, in addition to the decrement in corrosion current densities (icorr) for Co-Cr-Mo and Ni-Cr-Mo alloys and the reverse scan in cyclic polarization became in the wider range of
... Show More