Photobiomodulation (PBM) is a form of the use of visible red and Near-infrared (NIR) light at low power, where a laser light photon is absorbed at the electronic level, without heat production. PBM can be applied in wide range of treatment to help the wound, inflammation, edema, and pain reduction. However, there is a lack of scientific documentation regarding its actual effects. Objectives: This study assesses the impact of PBM on the release of M1-related cytokine in monocyte cells with particular emphasis on interleukin-1β (IL-1β) and Tumour Necrosis Factor α (TNF-α). Methods: Tamm-Horsfall Protein 1 (THP-1) macrophages M1 cells have been exposed to the light from the diode laser of 850nmat different doses (0, 0.6, 1.2 and 3.6 J/cm2). The release of cytokines was determined by enzyme-linked immunosorbent assay, after different periods of incubation (0, 12, 24, and 48 hours) post-irradiation. The proliferation of fibroblast cells suspended in irradiated M1-supernatent was evaluated for the same periods of incubation. Results: The results showed that PBM significantly enhanced M1-related cytokine release (p < 0.05). Obviously, IL-1β increased post-irradiation at 1.2 J/cm2 more than other doses for all incubation periods. TNF-α was decreased significantly after two days of irradiation (p < 0.005) for all doses. A significant increase in fibroblast proliferation (p < 0.005) was observed concomitant with the boost of cytokine release. Conclusion: This in vitro study has demonstrated that the PBM of the 850 nm diode laser therapy can enhance M1-related cytokine release, which in turn increases the proliferation of fibroblast cells. Moreover, PBM at 850 nm plays an anti-inflammatory role, which manifested by decreasing the level of TNF-α. Therefore, this therapy may be able to accelerate the wound healing process.
Numerous blood biomarkers are altered in COVID-19 patients; however, no early biochemical markers are currently being used in clinical practice to predict COVID-19 severity. COVID-19, the most recent pandemic, is caused by the SRS-CoV-2 coronavirus. The study was aimed to identify patient groups with a high and low risk of developing COVID-19 using a cluster analysis of several biomarkers. 137 women with confirmed SARS CoV-2 RNA testing were collected and analyzed for biochemical profiles. Two-dimensional automated hierarchy clustering of all biomarkers was applied, and patients were sorted into classes. Biochemistry marker variations (Ferritin, lactate dehydrogenase LDH, D-dimer, and C- reactive protein CRP) have split COVID-19 patien
... Show MoreAbstract
The present investigation aimed to formulate a liquid self-microemulsifying drug delivery system (SMEDDS) of tacrolimus to enhance its oral bioavailability by improving its dispersibility and dissolution rate. Four liquid SMEDDS were prepared using maisine CC as oil phase, labrasol ALF as surfactant and transcutol HP as co-surfactant based on the solubility studies of tacrolimus in these components. The phase behavior of the components and the area of microemulsion were evaluated using pseudoternary phase diagrams. The formulations were also assessed for thermodynamic stability, robustness to dilution, self-emulsification time, drug content, globule size and polydispersity index. The prepared SMEDDS formulations exhibi
... Show MoreAn experimental work has been done to study the major factors that affect the axial dispersion of some hydrocarbons during liquid-liquid miscible displacement. Kerosene and gas oil are used as displacing phase while seven liquid hydrocarbons of high purity represent the displaced phase, three of the liquids are aromatics and the rest are of paraffinic base. In conducting the experiments, two packed beds of different porosity and permeability are used as porous media.
The results showed that the displacement process is not a piston flow, breakthrough of displacing fluids are shown before one pore volume has been injected. The processes are stable with no evidence of viscous fingering.
Dispersion model as a
... Show MoreRoot-finding is an oldest classical problem, which is still an important research topic, due to its impact on computational algebra and geometry. In communications systems, when the impulse response of the channel is minimum phase the state of equalization algorithm is reduced and the spectral efficiency will improved. To make the channel impulse response minimum phase the prefilter which is called minimum phase filter is used, the adaptation of the minimum phase filter need root finding algorithm. In this paper, the VHDL implementation of the root finding algorithm introduced by Clark and Hau is introduced.
VHDL program is used in the work, to find the roots of two channels and make them minimum phase, the obtained output results are
Many organizations today are interesting to implementing lean manufacturing principles that should enable them to eliminating the wastes to reducing a manufacturing lead time. This paper concentrates on increasing the competitive level of the company in globalization markets and improving of the productivity by reducing the manufacturing lead time. This will be by using the main tool of lean manufacturing which is value stream mapping (VSM) to identifying all the activities of manufacturing process (value and non-value added activities) to reducing elimination of wastes (non-value added activities) by converting a manufacturing system to pull instead of push by applying some of pull system strategies a
... Show MoreThe main aim of this research paper is investigating the effectiveness and validity of Meso-Scale Approach (MSA) as a modern technique for the modeling of plain concrete beams. Simply supported plain concrete beam was subjected to two-point loading to detect the response in flexural. Experimentally, a concrete mix was designed and prepared to produce three similar standard concrete prisms for flexural testing. The coarse aggregate used in this mix was crushed aggregate. Numerical Finite Element Analysis (FEA) was conducted on the same concrete beam using the meso-scale modeling. The numerical model was constructed to be a bi-phasic material consisting of cement mortar and coarse aggregate. The interface between the two c
... Show MoreIn recent years, infectious diseases are increasingly being encountered in clinical settings. Due to the development of antibiotic resistance and the outbreak of these diseases caused by resistant pathogenic bacteria, the pharmaceutical companies and the researchers are now searching for new unconventional antibacterial agents. Recently, in this field, the application of nanoparticles is an emerging area of nanoscience and nanotechnology. For this reason, nanotechnology has a great deal of attention from the scientific community and may provide solutions to technological and environmental challenges. A common feature that these nanoparticles exhibit their antimicrobial behavior against pathogenic bacteria. In this report, we evaluate
... Show MoreThe Chemistry of heterocyclic sulphur and nitrogen containing compounds have a great role in the field of scientific studies, The 2-amino 5-mercapto-1,3,4-thiadiazole ring for instance, has gained more importance in recent years because they are considered as potent biologically active nucleus. In this study disulfide derivative can be obtained by oxidation with hydrogen peroxide of thiol group of the heterocyclic 2-amino 5-mercapto-1,3,4-thiadiazole ring to obtain compound (3) with expected antibacterial activity. In order to use it as a diazo component to prepare some new bis azo compounds as possible antibacterial agents, the reaction of two primary amino groups on both sides of disulfide dimer with sodium nitr
... Show More