This study focuses on improving the safety of embankment dams by considering the effects of vibration due to powerhouse operation on the dam body. The study contains two main parts. In the first part, ANSYS-CFX is used to create the three-dimensional (3D) Finite Volume (FV) model of one vertical Francis turbine unit. The 3D model is run by considering various reservoir conditions and the dimensions of units. The Re-Normalization Group (RNG) k-ε turbulence model is employed, and the physical properties of water and the flow characteristics are defined in the turbine model. In the second phases, a 3D finite element (FE) numerical model for a rock-fill dam is created by using ANSYS®, considering the dam connection with its powerhouse represented by four vertical Francis turbines, foundation, and the upstream reservoir. Changing the upstream water table minimum and maximum water levels, standers earth gravity, fluid-solid interface, hydrostatic pressure, and the soil properties are considered. The dam model runs to cover all possibilities for turbines operating in accordance with the reservoir discharge ranges. In order to minimize stresses in the dam body and increase dam safety, this study optimizes the turbine operating system by integrating turbine and dam models.
Establishing the systemic character of vocabulary, its relationship with other language systems, their interdependence creates the possibility of a comprehensive scientific study and description of the lexical system of each language, as well as contrastive comparative studies of several languages, including their phraseological composition.
It is known that not all words-components of phraseological units are equivalent in their role in the formation of the semantic content of phraseological units. In this regard, it is necessary to introduce the concept of a lexical dominant. To this we include words, which are kind of centers around which the entire semantic complex of phraseological units, the entire set of its words-componen
... Show MoreTo limit or reduce common microbial contamination occurrence in dairy products in general and in soft cheese in particular, produced in locally plants, this study was performed to demonstrate the possibility of implementing HACCP in one of dairy plants in Baghdad city
HACCP plan was proposed in soft cheese production line. A pre-evaluation was performed in soft cheese line production, HACCP Pre-requisites programs was evaluated from its presence and effectiveness. The evaluation was demonstrated risk in each of: Good Manufacturing Practice (GMP) program, evaluated as microbial and physical risk and considered as critical r
... Show MoreThe aim of the research is to identify to what extent to which Malcolm Baldrige standards of total quality are applied in the after-sales services of a private sector company for electrical appliances, from the point of view of administrative leaders, in it. To achieve this aim a questionnaire has been used to measure the degree of application of Malcolm’s seven criteria for total quality, namely: (leadership, strategic planning, focus on the customer, measurement and analysis and knowledge management, focus in human resource and operation management and results of the company’s management), the research found that the company achieved a good level of the standard from the de
... Show MoreThis paper presents the results of the slope failure analyses from fracture distributions and their relation to tectonic activity; the analytical results have indicated that the phenomena of plane failure, wedge failure and toppling failure can occur at almost of the survey sites within the study area.
The statistical data show that the fracture orientation mainly develop in the E-W, N-S and NW-SE due to the influence of tectonic activity. The occurrence of them together with the rock slope surface orientation has formed plane failure on the slope surface of the 3B highway in the E-W direction and the types of wedge failure and toppling failure on the slope surface of the highw
... Show MoreHS Saeed, SS Abdul-Jabbar, SG Mohammed, EA Abed, HS Ibrahem, Solid State Technology, 2020
There are many configurations of directional control valve. Directional control valve has complex construction, such as moving spool to control the direction of actuator and desired speed. Magneto-rheological (MR) fluid is one of controllable fluids. Utilizing the MR fluid properties, direct interface can be realized between magnetic field and fluid power without the need for moving parts like spool in directional control valves. This paper presents the design of multi configuration MR directional control valve. The construction and the principle of work of the valve are presented. The experiment was conducted to show the working principle of the valve functionally. The valve worked proportionally to control the direction and speed of hydra
... Show MoreDirectional control valves are designed to control direction of flow, while actuators maintain required speeds and precise positions. Magnetorheological (MR) fluid is a controllable fluid. Utilizing the MR fluid properties, direct interface between magnetic fields and fluid power is possible, without the need for mechanical moving parts like spools. This study proposes a design of a four-way three-position MR directional control valve, presents a method of building, and explains the working principle of the valve. An analysis of the design and finite elements using finite element method of magnetism (FEMM) software was performed on each valve. The magnetic circuit of the MR valve was analyzed and the performance was simulated. The
... Show More