The multi-dentate Schiff base ligand (H2L), where H2L=2,2'-(((1,3,5,6)-1-(3-((l1-oxidaneyl)-l5-methyl)-4-hydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)hepta-1,6-di ene-3,5-diylidene)bis(azaneylylidene))bis(3-(4-hydroxyphenyl)propanoic acid), has been prepared from curcumin and L- Tyrosine amino acid. The synthesized Schiff base ligand (H2L) and the second ligand 1,10-phenanthroline (phen) are used to prepare the new complexes [Al(L)(phen)]Cl, K[Ag(L)(phen)] and [Pb(L)(phen)]. The synthesized compounds are characterized by magnetic susceptibility measurements, micro elemental analysis (C.H.N), mass spectrometry, molar conductance, FT-infrared, UV-visible, atomic absorption (AA), 13C-NMR, and 1H-NMR spectral studies. The characterization of the synthesized complexes shows that the environment surrounding the central metal ion in the complexes adopted a distorted octahedral configuration. Moreover, the conductivity measurements show a non-electrolytic character for the [Pb(L)(phen)] complex and an electrolytic character for the [Al(L)(phen)]Cl and K[Ag(L)(phen)] complexes. The experimental infrared data are supported by density functional theory (DFT) calculations using the B3LYP level of theory and LANL2DZ basis set. The vibrational frequencies of the molecules are computed using the optimized geometry obtained from the DFT calculations. The calculated vibrational frequencies have been compared with obtained experimental values. 1H and 13C-NMR chemical shifts were computed for the H2L ligand using the DFT/GIAO method. Additionally, the molecular electronic structures of the complexes have been investigated by DFT calculations.
The ligand 2-Hydroxy-N-pyridin-2-ylmethyl-acetamide(L) has been prepared from reaction of 2-(aminomethyl)pyridin with chloroacetic acid (1:1).It has been characterized by elemental analysis (C,H,N) ,'H, 13 C-NMR, IR and electronic spectra. The complexes of divalent (Co,Ni,Cu,Zn,Cd and Hg) ions and trivalent(Cr) ion have been synthesized and characterized by IR, electronic spectra, molar conductivity, atomic absorption and molar ratio (Ni 2+) complex. The analytical studies for the complexes show; octahedral for (Cr 3+),square planar for (Cu 2+) and (Co,Ni Zn, Cd and Hg) tetrahedral geometries. The study of biological activity of the ligand (L) and its complexes (Co,Ni,Cu,Cd,Hg) in two deferent concentration (1and5) mg/ml showed various acti
... Show MoreComplexes of Co(II),Ni(II),Cu(II)and Zn(II) with mixed ligand of 4 tributylphosphine (PBu3) were prepared in aqueous ethanol with (1:2:2) (M:L:PBu3)The prepared
In this study, low cost biosorbent ̶inactive biomass (IB) granules (dp=0.433mm) taken from drying beds of Al-Rustomia Wastewater Treatment Plant, Baghdad-Iraq were used for investigating the optimum conditions of Pb(II), Cu(II), and Ni(II) biosorption from aqueous solutions. Various physico-chemical parameters such as initial metal ion concentration (50 to 200 mg/l), equilibrium time (0-180 min), pH (2-9), agitation speed (50-200 rpm), particles size (0.433 mm), and adsorbent dosage (0.05-1 g/100 ml) were studied. Six mathematical models describing the biosorption equilibrium and isotherm constants were tested to find the maximum uptake capacities: Langmuir, Freundlich, Redlich–Peterson, Sips, Khan, and Toth models. The best fit to the P
... Show MoreThe ligand 2-[1-(1H-indol-3-yl)ethylimino) methyl]naphthalene-1-ol, derived from 1-hydroxy-2-naphthaldehyde and 2-(1H-indol-3-yl)ethylamine, was used to produce a new sequence of metal ions complexes. Thus ligand reactions with NiCl2.6H2O, PdCl2, FeCl3.6H2O and H2PtCl6.6H2O were sequentially made to collect mono-nuclear Ni(II), Pd(II), Fe (III), and Pt(IV). (IR or FTIR), Ultraviolet Reflective (UV–visible), Mass Spectra analysis, Bohr-magnetic (B.M.), metal content, chloride content and molar conductivity have been the defining features of the composites. The Fe(III) and Pt(IV) complexes have octahedral geometries, while the Ni(II) complex has tetra
... Show MoreSchiff bases (SBs) based on amino acid derivative stand for multipurpose ligands that formed by condensing amino acids with carbonyl groups. They are significant in pharmaceutical and medical areas due to their widespread biological actions such as antiseptic, antifungal, along with antitumor actions. Transition metallic complexes resulting from SB ligands with biological activity were extensively experimented in the literature. In this article, we review, in details, about synthesizing and biological performances of SBs along with its complexes.
All the prepared metal complexes of Pt (IV), Au(III), Rh (III), Co (II) and V(IV) with new ligand sodium [5-(p-nitro phenyl)-/4-phenyl-1,2,4-triazole-3-dithiocarbamato hydrazide] (TRZ.DTC) have been synthesized and characterized in solid state by using flame atomic absorption, elemental analysis C.H.N.S, FT-IR ,UV-Vis Spectroscopy, conductivity and magnetic susceptibility measurements. The nature of the complexes formed in ethanolic solution has been studied following the molar ratio method also was studied stability constant and found to be stable in molar ratio1:1 of VL (IV) and CoL(II) while Pt(IV), Au(III) and Rh(III) complexes stable in molar ratio 1:2 as well as the molar absorptivity for these complexes were calculated. From the prev
... Show MoreThe synthesized ligand (3-(2-amino-5-(3,4,5-tri-methoxybenzyl)pyrimidin-4-ylamino)-5,5-dimethylcyclohex-2-enone] [H1L1] was characterized via fourier transform infrared spectroscopy (FTIR), 1H, 13C – NMR, Mass spectra, (CHN analysis), UV-vis spectroscopic approaches. Analytical and spectroscopic techniques like chloride content, micro-analysis, magnetic susceptibility UV-visible, conductance, and FTIR spectra were used to identify mixed ligand complexes. Its (ML13ph) mixed ligand complexes [M= Co (II), Ni (II), Cu (II), Zn (II), and Cd (II); (H1L1) = β-enaminone ligand=L1 and (3ph) =3-aminophenol= L2]. The results demonstrate that the complexes are produced with a molar ratio of M: L1:L2 (1:1:1). To generate the appropriate compl
... Show MoreNew derivative molecular absorption spectrophotometric methods have been developed for the determination of Al (III) , Mn (II) , individually and binary mixtures . The aim of this model of study is to obtain analytical results characterized by adequate standard of analytical figures of merits through application of derivative Spectrophotometry (dnA/d?n). The two metals acetyl acetonates are chemically stable and are widely used as catalysts . Where Interferences are probable due to very close or nearby peaks or Summits, the Zero – Crossing derivative measurement technique is used to avoid interfering effects between two metals pairs.
By unusual method for separating two isomers of a substituted nitro-coumarin using a soxhlet extractor and in controlling temperature to get a selective nitration reaction, several new Schiff base coumarins were synthesized from nitro coumarins as starting material, which were reduced by Fe in glacial acetic acid to produce corresponding amino coumarin derivatives. Then the latter was reacted with different aromatic aldehydes to produce the desired Schiff bases derivatives. After characterization by Fourier transform infrared (FT-IR), Proton nuclear magnetic resonance (1HNMR) and Carbon-13 nuclear magnetic resonance (C-NMR), all these compounds were evaluated as potential Antimicrobial and Antioxidant Agents.
A new Azo‐Schiff base ligand L was prepared by reaction of m‐hydroxy benzoic acid with (Schiff base B) of 3‐[2‐(1H–indol‐3‐yl)‐ethylimino]‐1.5‐dimethyl‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐ylamine. This synthesized ligand was used for complexation with different metal ions like Ni(II), Co(II), Pd(II) and Pt(IV) by using a molar ratio of ligand: metal as 1:1. Resulted compounds were characterized by NMR (1H and 13C), UV–vis spectroscopy, TGA, FT‐IR, MS, elemental analysis, magnetic moment and molar conductivity studies. The activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS*, ΔG*and
... Show More