Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (= 2.93, 3.91 and 4.89) and different cut depth (= 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (= 2.93) and cut depth= 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape.
ABSTRACT
Ticagrelor is an orally administered antiplatelet medicine, direct-acting P2Y12-receptor antagonist. Ticagrelor binds reversibly and noncompetitively to the P2Y12 receptor at a site distinct from that of the endogenous agonist adenosine diphosphate (ADP). Inhibition of platelet aggregation stimulated by ADP is a commonly used pharmacodynamic parameter for P2Y12-receptor antagonists.
Ticagrelor is a crystalline powder with an aqueous solubility of approximately 10?g/mL at room temperature.
... Show MoreIn this paper, a theoretical analysis of optimum bed thickness operates under mass transfer control for realizing a high efficiency and reaction conversion of an electrochemical reactor has been made based on flowthrough porous electrode (FTPE) configuration. Many models have been used to represent the optimum bed thickness by taking a look into previous works concerned and collecting all related information, data, and models. The parameters that affect the optimum bed thickness have been visualized and reviewed, and almost all of them have been examined by experimental data from different sources and based on the various models. It has been found that the increase in electrolyte flow rate, concentration, limiting current density, and sp
... Show MoreThe flow measurements have increased importance in the last decades due to the shortage of water resources resulting from climate changes that request high control of the available water needed for different uses. The classical technique of open channel flow measurement by the integrating-float method was needed for measuring flow in different locations when there were no available modern devices for different reasons, such as the cost of devices. So, the use of classical techniques was taken place to solve the problem. The present study examines the integrating float method and defines the parameters affecting the acceleration of floating spheres in flowing water that was analyzed using experimental measurements. The me
... Show MoreThe two-dimensional transient heat conduction through a thermal insulation of temperature dependent thermal properties is investigated numerically using the FVM. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner surface with a step change in temperature and subjected at its outer surface with a natural convection boundary condition associated with a periodic change in ambient temperature and heat flux of solar radiation. Two thermal insulation materials were selected. The fully implicit time scheme is selected to represent the time discretization. The arithmetic mean thermal conductivity is chosen to be the value of the approximated thermal conductivity at the i
... Show MoreA reliable and environmental analytical method was developed for the direct determination of tetracycline using flow injection analysis (FIA) and batch procedures with spectrophotometric detection. The developed method is based on the reaction between a chromogenic reagent (vanadium (III) solution) and tetracycline at room temperature and in a neutral medium, resulting in the formation of an intense brown product that shows maximum absorption at 395 nm. The analytical conditions were improved by the application of experimental design. The proposed method was successfully used to analyze samples of commercial medications and verified throughout the concentration ranges of 25–250 and 3–25 µg/mL for both FIA and batch procedures, respecti
... Show MoreA theoretical study to design a conformal microstrip antennas was introduced in this work. Conformal microstrip antennas define antennas which can be conformed to a certain shape or to any curved surface. It is used in high-speed trains, aircraft, defense and navigation systems, landing gear and various communications systems, as well as in body wearable. Conformal antennas have some advantages such as a wider-angle coverage compared to flat antennas and low radar cross-sectional (RCS) and they are suitable for using in Radome. The main disadvantage of these antennas is the narrow bandwidth. The FDTD method is extremely useful in simulating complicated structures because it allows for direct integration of Maxwell's equations depending o
... Show MoreTillage tools are subject to friction and low-stress abrasive wear processes with the potential deterioration of the desired soil quality, loss of mechanical weed efficacy, and downtime for replacing worn tools. Limited experimental methods exist to quantify investigate the effect of wear-resistant coatings on shape parameters of soil-engaging tools. ASTM standard sand/rubber wheel abrasion and pin-on-disk tests are not able to simulate wear characteristics of the complex shape of the tillage tools. Even though the tribology of tillage tools can be realistic from field tests, tillage wear tests under field conditions are expensive and often challenging to generate repeatable engineeri
Employing phase-change materials (PCM) is considered a very efficient and cost-effective option for addressing the mismatch between the energy supply and the demand. The high storage density, little temperature degradation, and ease of material processing register the PCM as a key candidate for the thermal energy storage system. However, the sluggish response rates during their melting and solidification processes limit their applications and consequently require the inclusion of heat transfer enhancers. This research aims to investigate the potential enhancement of circular fins on intensifying the PCM thermal response in a vertical triple-tube casing. Fin arrays of non-uniform dimensions and distinct distribution patterns were des
... Show MoreA batch and flow injection (FI) spectrophotometric methods are described for the determination of barbituric acid in aqueous and urine samples. The method is based on the oxidative coupling reaction of barbituric acid with 4-aminoantipyrine and potassium iodate to form purple water soluble stable product at λ 510 nm. Good linearity for both methods was obtained ranging from 2 to 60 μg mL−1, 5–100 μg mL−1 for batch and FI techniques, respectively. The limit of detection (signal/noise = 3) of 0.45 μg mL−1 for batch method and 0.48 μg mL−1 for FI analysis was obtained. The proposed methods were applied successfully for the determination of barbituric acid in tap water, river water, and urine samples with good recoveries of 99.92
... Show MorePerformance of gas-solid spouted bed benefit from solids uniformity structure (UI).Therefore, the focus of this work is to maximize UI across the bed based on process variables. Hence, UI is to be considered as the objective of the optimization process .Three selected process variables are affecting the objective function. These decision variables are: gas velocity, particle density and particle diameter. Steady-state solids concentration measurements were carried out in a narrow 3-inch cylindrical spouted bed made of Plexiglas that used 60° conical shape base. Radial concentration of particles (glass and steel beads) at various bed heights and different flow patterns were measured using sophisticated optical probes. Stochastic Genetic
... Show More