Scleral acrylic resin is widely used to synthesize ocular prosthesis. However, the properties of this material change over time, thus requiring the prosthesis to be refabricated. Many studies were conducted to improve these properties by reinforcing this material with nanoparticles. This study aims to evaluate the effect of silver nanoparticle powder on the mechanical properties (transverse flexural strength, impact strength, shear bond strength, surface microhardness, and surface roughness) of scleral acrylic resin used for ocular prostheses. Two concentrations were selected from the pilot study and evaluated for their effects on scleral acrylic resin properties. According to the pilot study, 0.01 and 0.02wt% AgNPs powder improved the transverse flexural strength, microhardness, and surface roughness compared with other percentages. The specimens in the main study were divided into (3) main groups, (50) specimens without additives (control group A), (50) experimental specimens (with 0.01wt% AgNPs group B), and (50) experimental specimens (with 0.02 wt% AgNPs group C). Each group was subdivided into (5) equal subgroups depending on the tests used. The data were studied using one way ANOVA and post hoc LSD test. At 0.01 wt% AgNPs addition, the mean values of transverse flexural strength insignificantly increased (p> 0.05), and those of impact strength and shear bond strength significantly increased (p< 0.05) compared with those of the control group. At 0.02 wt% AgNPs addition (group C), the mean value of transverse flexural strength significantly increased (p< 0.05), that of impact strength insignificantly increased (p> 0.05), and that of shear bond strength increased with high significance (p< 0.01) compared with those of the control group. Group C showed insignificant increase in the mean values of transverse flexural strength, impact strength, and shear bond strength (p. 0.05) compared with group B. The scleral acrylic resin added with 0.01 and 0.02 wt% AgNPs showed insignificant increase in microhardness and insignificant decrease in surface roughness. The addition of AgNPs powder in both concentrations improved the mechanical properties of scleral acrylic resin used for ocular prostheses.
Background: Radiopacity is one of the prerequisites for dental materials, especially for composite restorations. It's essential for easy detection of secondary dental caries as well as observation of the radiographic interface between the materials and tooth structure. The aim of this study to assess the difference in radiopacity of different resin composites using a digital x-ray system. Materials and methods: Ten specimens (6mm diameter and 1mm thickness) of three types of composite resins (Evetric, Estelite Sigma Quick,and G-aenial) were fabricated using Teflon mold. The radiopacity was assessed using dental radiography equipment in combination with a phosphor plate digital system and a grey scale value aluminum step wedge with thickness
... Show MoreBackground: Radiopacity is one of the prerequisites for dental materials, especially for composite restorations. It's essential for easy detection of secondary dental caries as well as observation of the radiographic interface between the materials and tooth structure. The aim of this study to assess the difference in radiopacity of different resin composites using a digital x-ray system. Materials and methods: Ten specimens (6mm diameter and 1mm thickness) of three types of composite resins (Evetric, Estelite Sigma Quick,and G-aenial) were fabricated using Teflon mold. The radiopacity was assessed using dental radiography equipment in combination with a phosphor plate digital system and a grey scale value aluminum step wedge with thickness
... Show MoreBackground: Nanotechnology represents a new science that promises to provide a broad range of uses and improved technologies for biological and biomedical applications. One of the reasons behind the intense interest is that nanotechnology permits synthesis of materials that have structure is less than 100 nanometers. The present work revealed the effect of zinc oxide nanoparticles (ZnO NPs) on Streptococcus mutans of Human Saliva in comparison to de-ionized water. Materials and methods: Streptococcus mutans were isolated from saliva of forty eight volunteers of both sexes their age range between 18-22 years and then purified and diagnosed according to morphological characteristic and biochemical tests. Different concentrations of ZnO NPs w
... Show MoreGround state energies and other properties of 2S shell for some atoms as Be(Z=4), B(Z=5), C(Z=6) and N(Z=7) were calculated by using Hartree-Fock wave function. We found the values of potential energies in hartree unit (3.8369, 6.78565, 10.18852 and 14.41089) respectively and the other proprieties like expectation values of the position < r1m > were in agreement with the published results. All the studied atomic properties were normalized.
Copper selenide (Cu2Se) thin films were prepared by thermal evaporation at RT with thickness 500 nm. The heat-treating for (400 &500) K for the absorber layer has been investigated. This research includes, studying the structural properties of X-ray diffraction (XRD) that show the Cu2Se thin film (Cubic) and has a polycrystalline orientation prevalent (220). Moreover, studying the effect of annealing on their surface morphology properties by using Atomic Force Microscopy AFM. Optical properties were considered using the transmittance and absorbance spectra had been recorded when wavelength range (400 - 1000) nm in order to study the absorption coefficient and energy gap. It was found that these films had allowed direct transitio
... Show MoreNanoparticles of copper sulfide have been prepared by simple reaction between using copper nitrate with different concentrations ratio 0.1, 0.3, and 0.5 mM, thiourea by a simple chemical route. The prepared Nano powders have been deposited onto glass substrates by casting method at 60°C. The structure of the product Nano- films has been studied by x-ray diffraction, where the patterns showed that all the samples have a hexagonal structure of covellite copper sulfide with the average crystalline sizes 14.07- 16.51 nm. The morphology has been examined by atomic force microscopy, and field emission scan electron microscopy. The AFM images showed particles with almost spherical and rod shapes with average diameter sizes of 49.11- 90.64 nm.
... Show MoreBackground: Smoking is the major environmental risk factor that has been associated with the pathogenesis and progression of periodontal diseases. Interleukin-8 (IL-8), has been associated with the immunopathology of periodontitis. Objectives: To determine the influence of smoking on salivary Interleukin-8 level from smokers and non-smokers with periodontitis and periodontally healthy control subjects.
Materials and Methods: Un-stimulated saliva samples were collected of 90 participants: 30 smokers and 30 non-smokers with chronic periodontitis, as well as 30 periodontally healthy control subjects. The clinical parameters such as the pocket depth, clinical attachment loss, plaque index, and gingiv
... Show MoreCopper doped Zinc oxide and (n-ZnO / p-Si and n-ZnO: Cu / p-Si) thin films thru thickness (400±20) nm were deposited by thermal evaporation technique onto two substrates. The influence of different Cu percentages (1%,3% and 5%) on ZnO thin film besides hetero junction (ZnO / Si) characteristics were investigated, with X-ray diffractions examination supports ZnO films were poly crystal then hexagonal structural per crystallite size increase from (22.34 to 28.09) nm with increasing Cu ratio. The optical properties display exceptional optically absorptive for 5% Cu dopant with reduced for optically gaps since 3.1 toward 2.7 eV. Hall Effect measurements presented with all films prepared pure and doped have n-types conductive, with a ma
... Show More