For design purposes, it`s necessary to know the compression rate of soil layers which might be happened when it`s subjected to effective stresses. Also, it`s essential to know the rate of flow through soil mass specially for the design of marine structures or earth embankment. These two important behavior could be predicted from the coefficient of consolidation (Cv) and the coefficient of permeability (k). This study shows the effect of cutback asphalt stabilization on Cv and k and other compressibility factors, the investigation was done for silty clay samples, specimens were prepared by mixing the soil with different percentage of asphalt from (0-10)% and subjected to one-dimensional consolidation test of 50mm diameter and 20mm height were done at soaked condition, it was conducted that Cv increased for asphaltic soil of (2-6)% Cutback and decreased for soil with cutback of (8-10)%. On the other hand, the the coefficient of permeability (k) and the coefficient of volume change (mv) increased for soil with (2-4)% cutback and decreased by adding more cutback asphalt to soil till 10%. The compression index (Cc) value increase to the optimum value at 2% cutback content then start to decrease till reaching the 10%. The re-compression index (Cr) shows a general increase in values when add cutback asphalt to the soil, it increase until reaching its maximum value at 6% cutback content then decrease with increasing of cutback asphalt till 10%, the values of (Cr) shows an increase for the 10% cutback from 8%, that’s might be due to increasing of swelling potential due to increasing of liquid limit and blocking of voids ratio.
Gypseous soils represented one of the most complex salty soils that faced the geotechnical engineers. Structures that built on gypsum soil will undergo unexpected distortions that will eventually contribute to catastrophic failure. The purpose of this article is to understand the durability of gypsum soil against wetting drying cycles after improvement with polyurethane polymer especially investigate the effect of the wetting-drying cycle on collapsibility. The soil was brought from Sawa lake in AL-Muthanna Governorate in Iraq, with gypsum content 65.5%, A set of Odometer tests were performed to determine the collapsibility potential (CP) for treated and untreated gypsum soil. The result shows that adding a different per
... Show MoreSoil stabilization with stone powder is a good solution for the construction of subgrade for road way and railway lines, especially under the platforms and mostly in transition zones between embankments and rigid structures, where the mechanical properties of supporting soils are very influential. Stone powder often has a unique composition which justifies the need for research to study the feasibility of using this stone powder type for ground improvement applications. This paper presents results from a comprehensive laboratory study carried out to investigate the feasibility of using stone powder for improvement of engineering properties of clays.
The stone powder contains bassanite (CaSO4. ½ H
... Show MoreAbstract
This paper represents a study of the effect of the soil type, the drilling parameters and the drilling tool properties on the dynamic vibrational behavior of the drilling rig and its assessment in the drilling system. So first, an experimental drilling rig was designed and constructed to embrace the numerical work.
The experimental work included implementation of the drill-string in different types of soil with different properties according to the difference in the grains size, at different rotational speeds (RPM), and different weights on bit (WOB) (Thrust force), in a way that allows establishing the charts that correlate the vibration acceleration, the rate of penetration (ROP), and the power
... Show MoreIn this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and
... Show MoreThis paper focused on the stone matrix asphalt (SMA) technology that was developed essentially to guard against rutting distress. For this procedure, fibers play a racy role in stabilizing and preventing the drain down problem caused by the necessity of high binder content coupled with their strengthening effect. A set of specimens with cylindrical and slab shapes were fabricated by inclusions jute, polyester, and carbon fibers. For each type, three contents of 0.25%, 0.5%, and 0.75% by weight of mixture were added by lengths of 5, 7.5, and 10 mm. The prepared mixtures were tested to gain the essential pertained parameters discriminated by the values of drain down, Marshall quotient, rut depth, and dynamic stability. It
... Show MoreGypseous soils are common in several regions in the world including Iraq, where more than 28.6% of its surface is covered with this type of soil. This soil, with high gypsum content, causes different problems for construction and strategic projects. As a result of water flow through the soil mass, the permeability and chemical arrangement of these soils varies with time due to the solubility and leaching of gypsum. In this study, the soil of 36% gypsum content, was taken from one location about 100 km southwest of Baghdad, where the samples were taken from depths (0.5 - 1) m below the natural ground and mixed with (3%, 6%, 9%) of Copolymer and Novolac polymer to improve the engineering properties that include: collapsibility, perm
... Show MoreLung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show More