For design purposes, it`s necessary to know the compression rate of soil layers which might be happened when it`s subjected to effective stresses. Also, it`s essential to know the rate of flow through soil mass specially for the design of marine structures or earth embankment. These two important behavior could be predicted from the coefficient of consolidation (Cv) and the coefficient of permeability (k). This study shows the effect of cutback asphalt stabilization on Cv and k and other compressibility factors, the investigation was done for silty clay samples, specimens were prepared by mixing the soil with different percentage of asphalt from (0-10)% and subjected to one-dimensional consolidation test of 50mm diameter and 20mm height were done at soaked condition, it was conducted that Cv increased for asphaltic soil of (2-6)% Cutback and decreased for soil with cutback of (8-10)%. On the other hand, the the coefficient of permeability (k) and the coefficient of volume change (mv) increased for soil with (2-4)% cutback and decreased by adding more cutback asphalt to soil till 10%. The compression index (Cc) value increase to the optimum value at 2% cutback content then start to decrease till reaching the 10%. The re-compression index (Cr) shows a general increase in values when add cutback asphalt to the soil, it increase until reaching its maximum value at 6% cutback content then decrease with increasing of cutback asphalt till 10%, the values of (Cr) shows an increase for the 10% cutback from 8%, that’s might be due to increasing of swelling potential due to increasing of liquid limit and blocking of voids ratio.
The dynamic response of foundation rest on collapsible soil in dry and soaked states is studied through wide experimental programmed. Gypseous soil from Tikrit governorate area was obtained and subjected to various physical and chemical analysis to determine its properties. Steel rectangular footing (400x200x20) mm is manufactured. The machine is fitted to the footing, then the model machine foundation is placed centrally over the prepared soil layer in steel container (1200x 1000x1000)mm with proper care to maintain the center of gravity of whole system lie in the same vertical line with container.Then, the footing is subjected to vertical harmonic loading using a rotating mass type mechanical oscillator to simulate different dynamic lo
... Show MoreThe effect of adding sand on clayey soil shear strength is investigated in this study. Five different percentage of clay-sand mixtures are used; 100% clay with 0% sand termed 100C, 60% clay with 40% sand termed 60C-40S, 30% clay with 70% sand termed 30C-70S, 15% clay with 85% sand termed 15C-85S, and as well as 100% sand termed 100S. The used clay was obtained from Baghdad city in Iraq and classified as CH soil, while the used sand was taken from Al-Khider area from Iraq and classified as SW soil. The initial dry unit weight for all mixtures is 16 kN/m3. The results show that the variations of the soil shear strength properties with soil components content changes
Found through the study of tissues Alnbarh and domestic focus where a direct impact on the development of the larvae mature into pupae and then to adults appeared to clay soils have a negative impact more than sandy soil at different concentrations salt where as it turns out that the percentage of evolution fly larvae worm Lhalzonnih of the ancient worldadult to have reached more than 80%
In this paper, a shallow foundation (strip footing), 1 m in width is assumed to be constructed on fully saturated and partially saturated Iraqi soils, and analyzed by finite element method. A procedure is proposed to define the H – modulus function from the soil water characteristic curve which is measured by the filter paper method. Fitting methods are applied through the program (SoilVision). Then, the soil water characteristic curve is converted to relation correlating the void ratio and matric suction. The slope of the latter relation can be used to define the H – modulus function. The finite element programs SIGMA/W and SEEP/W are then used in the analysis. Eight nodded isoparametric quadrilateral elements are used for modeling
... Show MoreThis study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. The capability of mixed bacterial culture was examined to remediate the diesel-contaminated soil in bio piling system. For fast ex-situ treatment of diesel-contaminated soils, the bio pile system was selected. Two pilot scale bio piles (25 kg soil each) were constructed containing soils contaminated with approximately 2140 mg/kg total petroleum hydrocarbons (TPHs). The amended soil: (contaminated soil with the a
... Show MoreCollapsible soil has a metastable structure that experiences a large reduction in volume or collapse when wetting. The characteristics of collapsible soil contribute to different problems for infrastructures constructed on its such as cracks and excessive settlement found in buildings, railways channels, bridges, and roads. This paper aims to provide an art review on collapse soil behavior all over the world, type of collapse soil, identification of collapse potential, and factors that affect collapsibility soil. As urban grow in several parts of the world, the collapsible soil will have more get to the water. As a result, there will be an increase in the number of wetting collapse problems, so it's very important to com
... Show MoreSoil is a crucial component of environment. Total soil analysis may give information about possible enrichment of the soil with heavy metals. Heavy metals, potentially contaminate soils, may have been dumped on the ground. chromium, nickel and cadmium,
Soil compaction is one of the most harmful elements affecting soil structure, limiting plant growth and agricultural productivity. It is crucial to assess the degree of soil penetration resistance to discover solutions to the harmful consequences of compaction. In order to obtain the appropriate value, using soil cone penetration requires time and labor-intensive measurements. Currently, satellite technologies, electronic measurement control systems, and computer software help to measure soil penetration resistance quickly and easily within the precision agriculture applications approach. The quantitative relationships between soil properties and the factors affecting their diversity contribute to digital soil mapping. Digital soil maps use
... Show More