Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThe present study examines critically the discursive representation of Arab immigrants in selected American news channels. To achieve the aim of this study, twenty news subtitles have been exacted from ABC and NBC channels. The selected news subtitles have been analyzed within van Dijk’s (2000) critical discourse analysis framework. Ten discourse categories have been examined to uncover the image of Arab immigrants in the American news channels. The image of Arab immigrants has been examined in terms of five ideological assumptions including "us vs. them", "ingroup vs. outgroup", "victims vs. agents", "positive self-presentation vs. negative other-presentation", and "threat vs. non-threat". Analysis of data reveals that Arab immig
... Show MoreIn this paper, the goal of proposed method is to protect data against different types of attacks by unauthorized parties. The basic idea of proposed method is generating a private key from a specific features of digital color image such as color (Red, Green and Blue); the generating process of private key from colors of digital color image performed via the computing process of color frequencies for blue color of an image then computing the maximum frequency of blue color, multiplying it by its number and adding process will performed to produce a generated key. After that the private key is generated, must be converting it into the binary representation form. The generated key is extracted from blue color of keyed image then we selects a c
... Show MoreThis study aims to observe and analysis the propaganda discourse image for Daesh, and know how it marketing the fear due to symbols structure, and discover the straight meanings and hidden inspiration, with the ideology that the image presented.
The study is descriptive and qualitative, and the method is analytic survey used semiotic approach.
The most important results of the study refer to:
- Daesh functioning the image in fear manufacture in all it components: the symbol of savageness, body language, color, clothes uniform and professionally shot.
- The indicative meaning of fear promoted by Daesh based of the manufacturing «Holy», and that mean places non-touchable and non-insulted.
- Daesh used in its propagand
The woman represents an existential dualism with the man along history. This existence has been manifested through the history of Art starting from the arts of the old civilizations until modernism. It must be said that the history of Art refers to her presence as an extension for this history in the oriental arts, and the Arab countries including Iraq. The woman has varying outputs in terms of the content of her presence and the style of presentation. In her characterizations: maternity, fertility, femininity and others. The Iraqi artists adopted these fields among them the artist Jaber Alwan who formulated his style of presentation and its units depending on the feminine presence and his experience in her formal and stylistic fie
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreIn the latest years there has been a profound evolution in computer science and technology, which incorporated several fields. Under this evolution, Content Base Image Retrieval (CBIR) is among the image processing field. There are several image retrieval methods that can easily extract feature as a result of the image retrieval methods’ progresses. To the researchers, finding resourceful image retrieval devices has therefore become an extensive area of concern. Image retrieval technique refers to a system used to search and retrieve images from digital images’ huge database. In this paper, the author focuses on recommendation of a fresh method for retrieving image. For multi presentation of image in Convolutional Neural Network (CNN),
... Show MoreBackground: Body image is one of the most important psychological factors that affects adolescents’ personality and behavior. Body image can be defined as the person’s perceptions, thoughts, and feelings about his or her body.
Objectives: to identify the prevalence of body image concerns among secondary school students and its relation to different factors.
Subjects and methods: A cross-sectional study conducted in which 796 secondary school students participated and body shape concerns was investigated using the body shape questionnaire (BSQ-34).
Results: The prevalence of moderate/marked concern was (21.6%). Moderate/ marked body shape concern was significantly associated
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More