In this study, plain concrete simply supported beams subjected to two points loading were analyzed for the flexure. The numerical model of the beam was constructed in the meso-scale representation of concrete as a two phasic material (aggregate, and mortar). The fracture process of the concrete beams under loading was investigated in the laboratory as well as by the numerical models. The Extended Finite Element Method (XFEM) was employed for the treatment of the discontinuities that appeared during the fracture process in concrete. Finite element method with the feature standard/explicitlywas utilized for the numerical analysis. Aggregate particles were assumedof elliptic shape. Other properties such as grading and sizes of the aggregate particles were taken from standard laboratory tests that conducted on aggregate samples.Two different concrete beamswere experimentally and numerically investigated. The difference between beams was concentrated in the maximum size of aggregate particles. The comparison between experimental and numerical results showed that themeso-scale model gives a good interface for the representing the concrete models in numerical approach. It was concluded that the XFEM is a powerful technique to use for the analysis of the fracture process and crack propagation in concrete.
The existing study aimed to assess four soil moisture sensors’ capacitive (WH51 and SKU: S EN0193) and resistive (Yl69 and IC Station) abilities, which are affordable and medium-priced for their accuracy in six common soil types in the central region of Iraq. The readings’ calibration for the soil moisture sensor devices continued through two gravimetric methods. The first depended on the protocols’ database, while the second was the traditional calibration method. The second method recorded the lowest analysis error compared with the first. The moderate-cost sensor WH51 showed the lowest standard error (SE), MAD , and RMSE and the highest R² in both methods. The performance accuracy of WH51 was close to readings shown by the manufac
... Show MoreRheological instrument is one of the basic analytical measurements for diagnosing the properties of polymers fluids to be used in any industry. In this research polycarbonate was chosen because of its importance in many areas and possesses several distinct properties.
Two kinds of rheometers devices were used at different range of temperatures from 220 ˚C-300 ˚C to characterize the rheological technique of melted polycarbonate (Makrolon 2805) by a combination of different investigating techniques. We compared the results of the linear (oscillatory) method with the non-linear (steady-state) method; the former method provided the storage and the loss modulus of melted polycarbonate, and presented the Cox-Merz model as well. One of the
A new simultaneous spectrophotometric-kinetic method was developed to determine phenylephrine (PHEN) and tetracycline (TETR) via H-point standard addition method (HPSAM). The proposed procedures rely on the measurements of the difference in the rate of charge-transfer (CT) reaction between each of PHEN and TETR as electron donors with p-Bromanil (p-Br) as an electron acceptor. Different experimental factors which affect the extent of the complex formation were investigated by monitoring the value of absorbance at 446 nm. Time pair of 50 -100 sec was selected and employed, among different examined pairs since it results in the highest accuracy for HPSAM-plot. Linear calibration graphs in the concentration ranges of 10.0-40.0 and 10.0–50.0
... Show MoreTitanium dioxide nanorods have been prepared by sol-gel template
method. The structural and surface morphology of the TiO2 nanorods was
investigated by X-ray diffraction (XRD) and atomic force microscopy
(AFM), it was found that the nanorods produced were anatase TiO2 phase.
The photocatalytic activity of the TiO2 nanorods was evaluated by the
photo degradation of methyl orange (MO). The relatively higher
degradation efficiency for MO (D%=78.2) was obtained after 6h of exposed
to UV irradiation.
In this paper, a compact genetic algorithm (CGA) is enhanced by integrating its selection strategy with a steepest descent algorithm (SDA) as a local search method to give I-CGA-SDA. This system is an attempt to avoid the large CPU time and computational complexity of the standard genetic algorithm. Here, CGA dramatically reduces the number of bits required to store the population and has a faster convergence. Consequently, this integrated system is used to optimize the maximum likelihood function lnL(φ1, θ1) of the mixed model. Simulation results based on MSE were compared with those obtained from the SDA and showed that the hybrid genetic algorithm (HGA) and I-CGA-SDA can give a good estimator of (φ1, θ1) for the ARMA(1,1) model. Anot
... Show MoreAbstract. In this scientific work, we investigate the problem of the practical necessity of achieving the adequacy of translation activities with active translation from Russian into Arabic in various fields of translation. Based on the material of the latest suffix vocabulary, a serious attempt is made to clarify and specify the rules for the development of translator's intuition when translating from Russian into Arabic and vice versa. Based on the material collected by the latest suffix vocabulary, we try to make an attempt to reveal the role of suffix word creation in highlighting the general rules for achieving translation equivalence. The paper examines the process of creating words in multi-family languages, the difference between th
... Show MoreA chemometric method, partial least squares regression (PLS) was applied for the simultaneous determination of piroxicam (PIR), naproxen (NAP), diclofenac sodium (DIC), and mefenamic acid (MEF) in synthetic mixtures and commercial formulations. The proposed method is based on the use of spectrophotometric data coupled with PLS multivariate calibration. The Spectra of drugs were recorded at concentrations in the linear range of 1.0 - 10 μg mL-1 for NAP and from 1.0 - 20 μg mL-1 for PIR, DIC, and MEF. 34 sets of mixtures were used for calibration and 10 sets of mixtures were used for validation in the wavelength range of 200 to 400 nm with the wavelength interval λ = 1 nm in methanol. This method has been used successfully to quant
... Show More