In this study, plain concrete simply supported beams subjected to two points loading were analyzed for the flexure. The numerical model of the beam was constructed in the meso-scale representation of concrete as a two phasic material (aggregate, and mortar). The fracture process of the concrete beams under loading was investigated in the laboratory as well as by the numerical models. The Extended Finite Element Method (XFEM) was employed for the treatment of the discontinuities that appeared during the fracture process in concrete. Finite element method with the feature standard/explicitlywas utilized for the numerical analysis. Aggregate particles were assumedof elliptic shape. Other properties such as grading and sizes of the aggregate particles were taken from standard laboratory tests that conducted on aggregate samples.Two different concrete beamswere experimentally and numerically investigated. The difference between beams was concentrated in the maximum size of aggregate particles. The comparison between experimental and numerical results showed that themeso-scale model gives a good interface for the representing the concrete models in numerical approach. It was concluded that the XFEM is a powerful technique to use for the analysis of the fracture process and crack propagation in concrete.
This research deals with a shrinking method concernes with the principal components similar to that one which used in the multiple regression “Least Absolute Shrinkage and Selection: LASS”. The goal here is to make an uncorrelated linear combinations from only a subset of explanatory variables that may have a multicollinearity problem instead taking the whole number say, (K) of them. This shrinkage will force some coefficients to equal zero, after making some restriction on them by some "tuning parameter" say, (t) which balances the bias and variance amount from side, and doesn't exceed the acceptable percent explained variance of these components. This had been shown by MSE criterion in the regression case and the percent explained v
... Show MoreThe aim of this research does not deal with evaluation occurs at any points in the design of the plan alternatives themselves or formulation of goals and objectives. The aim of this research is that test and evaluate the fully alternatives. We can therefore state as the principle that evaluation of alternative plans must be based on attempts to show how far each plan satisfies all the objectives are expressed as specification of the performance of the urban and regional system. The planner can submit the result (as in the traditional way) for each alternative, with particular reference to the weighting of objectives. The summery result can be presented and the preferred plan indicated that with largest index of Goals-achievement.
... Show MoreBecause of the quick growth of electrical instruments used in noxious gas detection, the importance of gas sensors has increased. X-ray diffraction (XRD) can be used to examine the crystal phase structure of sensing materials, which affects the properties of gas sensing. This contributes to the study of the effect of electrochemical synthesis of titanium dioxide (TiO2) materials with various crystal phase shapes, such as rutile TiO2 (R-TiO2NTs) and anatase TiO2 (A-TiO2NTs). In this work, we have studied the effect of voltage on preparing TiO2 nanotube arrays via the anodization technique for gas sensor applications. The results acquired from XRD, energy dispersion spectro
... Show MoreA novel demountable shear connector for precast steel‐concrete composite bridges is presented. The connector uses high‐strength steel bolts, which are fastened to the top flange of the steel beam with the aid of a special locking nut configuration that prevents slip of bolts within their holes. Moreover, the connector promotes accelerated construction and overcomes typical construction tolerances issues of precast structures. Most importantly, the connector allows bridge disassembly, and therefore, can address different bridge deterioration scenarios with minimum disturbance to traffic flow, i.e. (i) precast deck panels can be rapidly uplifted and replaced; (ii) connectors can be rapidly removed and replaced; and (iii) steel beams can b
... Show MoreThis paper aims to investigate the flexural behavior of reinforced concrete beams considering fire resistance by adding Lightweight Expanded Clay Aggregates (LECA) to the concrete mix as partial coarse aggregate replacement. LECA is a type of porous clay with a uniform pore structure with fine, closed cells and hard, tightly sintered skin. The experimental work comprised four reinforced self-compacted concrete beams. All the specimens were identical in their geometrical layout of 1600×240×200 mm, reinforcement details, and support condition (simply supported). For all the beams, the main reinforcement was provided by two bars, each having a diameter of 12 mm, while a bar of 6 mm diameter was employed for the top and shear reinforc
... Show MoreSelf-compacted concrete (SCC) considered as a revolution progress in concrete technology due to its ability for flowing through forms, fusion with reinforcement, compact itself by its weight without using vibrators and economic advantages. This research aims to assess the fresh properties of SCC and study their effect on its compressive strength using different grading zones and different fineness modulus (F.M) of fine aggregate. The fineness modulus used in this study was (2.73, 2.82,2.9& 3.12) for different zones of grading (zone I, zone II& marginal zone(between zone I&II)) according to Iraqi standards (I.Q.S No.45/1984).Twelve mixes were prepared, each mix were tested in fresh state with slump, V-Funnel and L-Box tests, then 72
... Show MoreSelf-compacted concrete (SCC) considered as a revolution progress in concrete technology due to its ability for flowing through forms, fusion with reinforcement, compact itself by its weight without using vibrators and economic advantages. This research aims to assess the fresh properties of SCC and study their effect on its compressive strength using different grading zones and different fineness modulus (F.M) of fine aggregate. The fineness modulus used in this study was (2.73, 2.82,2.9& 3.12) for different zones of grading (zone I, zone II& marginal zone(between zone I&II)) according to Iraqi standards (I.Q.S No.45/1984).Twelve mixes were prepared, each mix were tested in fresh state with slump, V-Funnel and L-Box tests, t
... Show MoreMO Khudhair, 2020