The main object of this article is to study and introduce a subclass of meromorphic univalent functions with fixed second positive defined by q-differed operator. Coefficient bounds, distortion and Growth theorems, and various are the obtained results.
This systematic review aimed to investigate the relation between orthodontic treatment (OT) and the incidence of the gingival black triangle (GBT) after completing treatment with a fixed orthodontic appliance, as well as the associated risk factors and the level of alveolar bone. Electronic and hand searches were conducted in three electronic databases for relevant articles published up to March 2022. Retrieved articles went through a two-step screening procedure, and the risk of bias (RoB) was assessed by the Joanna Briggs Institute checklists. The incidence of GBT after OT was set as the primary outcome, while the secondary outcomes were the risk factors associated with GBT and alveolar bone loss following OT. Out of 421 papers, 5
... Show MoreSome relations of inclusion and their properties are investigated for functions of type " -valent that involves the generalized operator of Srivastava-Attiya by using the principle of strong differential subordination.
This study aims to classify the critical points of functions with 4 variables and 8 parameters, we found the caustic for the certain function with the spreading of the critical points. Finally, as an application, we found the bifurcation solutions for the equation of sixth order with boundary conditions using the Lyapunov-Schmidt method in the variational case.
In this paper we use non-polynomial spline functions to develop numerical methods to approximate the solution of 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of these method, and to compare the computed results with other known methods.
We have studied new subclass B (A, B,γ) over multivalent functions. We have present some effects because of the category B (A, B,γ). We bear mentioned simple properties, convolution properties, incomplete sums, weighted mean, arithmetic mean, linear combination, inclusion rapport and neighborhood properties, software concerning fractional calculus then vile residences because of both the classes…
The main objectives of this pepper are to introduce new classes. We have attempted to obtain coefficient estimates, radius of convexity, Distortion and Growth theorem and other related results for the classes
In this paper, the process for finding an approximate solution of nonlinear three-dimensional (3D) Volterra type integral operator equation (N3D-VIOE) in R3 is introduced. The modelling of the majorant function (MF) with the modified Newton method (MNM) is employed to convert N3D-VIOE to the linear 3D Volterra type integral operator equation (L3D-VIOE). The method of trapezoidal rule (TR) and collocation points are utilized to determine the approximate solution of L3D-VIOE by dealing with the linear form of the algebraic system. The existence of the approximate solution and its uniqueness are proved, and illustrative examples are provided to show the accuracy and efficiency of the model.
Mathematical Subject Classificat
... Show MoreBackground: This study aims to investigate the effect of fixed orthodontic appliances and/or antihypertensive drugs on the weight of experimental rats. Materials and Methods: Thir-ty-six male Wistar albino rats were subjected to a split-mouth design study, in which an orthodontic appliance was inserted in one side to move the first molar mesially for 2 weeks while the other side acted as a control to tooth movement. The rats were allocated into three groups: group A (n = 12), without any pharmacological treatment; group B (n = 12), subcu-taneous injection of bisoprolol fumarate (5 mg/kg) daily; and group C (n = 12), subcutaneous injection of valsartan (10 mg/kg) daily. A fixed orthodontic appliance with a closing coil spring delivering 5
... Show MoreIn this paper, we analyze several aspects of a hyperbolic univalent function related to convexity properties, by assuming to be the univalent holomorphic function maps of the unit disk onto the hyperbolic convex region ( is an open connected subset of). This assumption leads to the coverage of some of the findings that are started by seeking a convex univalent function distortion property to provide an approximation of the inequality and confirm the form of the lower bound for . A further result was reached by combining the distortion and growth properties for increasing inequality . From the last result, we wanted to demonstrate the effect of the unit disk image on the condition of convexity estimation
... Show MoreIn this paper, we introduce an exponential of an operator defined on a Hilbert space H, and we study its properties and find some of properties of T inherited to exponential operator, so we study the spectrum of exponential operator e^T according to the operator T.