This research study examines the impact of information technology on firm profitability and stock returns. Using a comprehensive dataset of firms across various industries, this research employs rigorous statistical analysis techniques to investigate the relationship between IT investments, firm profitability metrics, and stock returns. The study focuses at how IT investments affect financial performance measures including return on assets (ROA) and return on equity (ROE), with P-values of 0.34 and 0.12, respectively. Furthermore, the study investigates the influence of IT on stock returns, taking into account market capitalization, industry trends, and macroeconomic variables. This study's conclusions center on the beneficial association between IT investments and corporate profitability. The T-value for the IT investment has risen to 6.5. The analysis reveals that firms that strategically leverage IT investments tend to experience higher profitability metrics. Additionally, the research demonstrates the impact of IT on stock returns, highlighting the significance of IT as a driver of firm value and investor confidence. Moreover, this study delves into the mechanisms through which IT investments contribute to firm profitability and stock returns. It investigates the mediating role of factors such as process innovation, customer relationship management, and supply chain optimization, which facilitate the translation of IT investments into improved financial performance. The implications of this research are significant for both practitioners and policymakers. The findings provide valuable insights for firms seeking to enhance their profitability and create shareholder value through strategic IT investments. Additionally, policymakers can use these findings to formulate policies and initiatives that promote the adoption and effective utilization of IT in businesses across various sectors
Abstract: This study aims to investigate the effects of solvents of various polarities on the electronic absorption and fluorescence spectra of RhB and Rh6G. The singlet‐state excited dipole moments (me) and ground state dipole moments (mg) were estimated from the equations of Bakshiev -Kawski and Chamma‐ Viallet using the variation of Stokes shift along with the solvent’s dielectric constant (e) and refractive indexes (n). The observed singlet‐state excited dipole moments were found to be larger than the ground‐state ones. Moreover, the obtained fluorescence quantum yield values were influenced by the environment of the fluorescing molecule. Consequently, the concentration of the dye solution, excited singlet state absorption and
... Show More This paper concerns with openness concept in contemporary learning environment, which ranges from physical characters to its relation with learning efficiency and its output. Previous literatures differ to clear the effect of openness on the engagement between learner within themselves, and with this kind of spaces. Engagement means: active participation, the ability of making dialogue, self-reflection and the ability to explore and communicate with them and
within learning space. Research roblem was: The lack of knowledge about the effect of Openness on learner engagement with learning spaces. The two concepts were applied on three types of learning spaces in the Department of the Architectu
The influence of different thickness (500, 1000, 1500, and 2000) nm on the electrical conductivity and Hall effect measurements have been investigated on the films of copper indium gallium selenide CuIn1-xGaxSe2 (CIGS) for x= 0.6.The films were produced using thermal evaporation technique on glass substrates at R.T from (CIGS) alloy. The electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated and calculated as function of thickness. All films contain two types of transport mechanisms of free carriers, and increase films thickness was fond to increase the electrical conductivity whereas the activation energy (Ea) would vary with f
... Show MoreIn this research the electrical conductivity and optical measurements were made on the Iron Oxide (Fe2O3) films prepared by chemical spray pyrolysis method as a function of thickness (250, 350, 450, and 550)  20 nm. The measurements of electrical conductivity (σ), activation energies (Ea1, Ea2),and optical constant such as absorption coefficient, refractive index, extinction coefficient and the dielectric constants for the wavelengths in the range (300-900) nm have been investigated on (Fe2O3) thin films as a function of thickness. All films contain two types of transport mechanisms, and the electrical conductivity (σ) increases whereas the activation energy (Ea) would decrease as the films thi
... Show MoreThin films samples of Bismuth sulfide Bi2S3 had deposited on
glass substrate using thermal evaporation method by chemical
method under vacuum of 10-5 Toor. XRD and AFM were used to
check the structure and morphology of the Bi2S3 thin films. The
results showed that the films with law thickness <700 nm were free
from any diffraction peaks refer to amorphous structure while films
with thickness≥700 nm was polycrystalline. The roughness decreases
while average grain size increases with the increase of thickness. The
A.C conductivity as function of frequency had studied in the
frequency range (50 to 5x106 Hz). The dielectric constant,
polarizability showed significant dependence upon the variation of
thic
This work consists of a numerical simulation to predict the velocity and temperature distributions, and an experimental work to visualize the air flow in a room model. The numerical work is based on non-isothermal, incompressible, three dimensional, k turbulence model, and solved using a computational fluid dynamic (CFD) approach, involving finite volume technique to solve continuity, momentum and energy equations, that governs the room’s turbulent flow domain. The experimental study was performed using (1/5) scaled room model of the actual dimensions of the room to simulate room air flow and visualize the flow pattern using smoke generated from burnt herbs and collected in a smoke generator to delivered through
... Show MoreLow- and medium-carbon structural steel components face random vibration and dynamic loads (like earthquakes) in many applications. Thus a modification to improve their mechanical properties, essentially damping properties, is required. The present study focuses on improving and developing these properties, significantly dampening properties, without losing the other mechanical properties. The specimens used in the present study are structural steel ribbed bar ISO 6935 subjected to heating temperatures of (850, 950, and 1050) ˚C, and cooling schemes of annealing, normalizing, sand, and quenching was selected. The damping properties of the specimens were measured experimentally with the area under the curve for the loadi
... Show MoreThe e-commerce is one of the best achievements of the twentieth century, since the conduct commercial transactions via the Internet may be the consumer easy selection process and purchase convenient manner different from traditional methods, and with the beginnings of the new millennium impose the emergence of e-commerce term significant challenges to the insurance industry as an important economic sectors Generally, and insurance companies in particular as a result of scientific development, which has led to a reduction in costs and innovation in the production, which led to intense competition on both levels local or global. The insurance industry is a vital part of the economy and it has a varied impact to the community and individual
... Show More