Thermal properties of soils are important in buried structures contact problems. Although laboratory is distinctly advantageous in measuring the thermal conductivity of soil under ideal condition, given the ability to simulate relatively large-scale in place of soil bed, the field thermal conductivity of soil is not yet commonly used in many types of research. The use of only a laboratory experiment to estimate thermal conductivity may be the key reason for overestimation or underestimation it. In this paper, an intensive site investigation including field thermal conductivity tests for six different subsoil strata were performed using a thermal probe method (TLS-100) to systematically understanding the effects of field dry density, water content and soil type. Results were obtained from the alluvial plain lands in the middle part of Iraq, in an attempt to find a correlation between different soil characteristics and the thermal conductivity. It is shown that clayey soil generally had lower thermal conductivity than sandy soil. Thermal conductivity can potentially be affected by the proposed soil low or high plasticity. It is evident that in general, the measured field thermal conductivity value for the lean (low plasticity) silty clay increases with an increase in depth due to the increase of the degree of saturation; however, decreases with an increase in depth for the fat (high plasticity) silty clay. The field water content of the soil in the study obtained here increases so does the thermal conductivity of the soil for most the sites. Further investigations are required, to understand the effects of other environmental conditions with the seasons. This is especially helpful to the future of geotechnical engineering when designing geothermal systems. © 2021 Elsevier Ltd. All rights reserved.
This study aims to assess the removal efficiency andestablish the BOD5 and COD statisticalcorrelation of the sewage flowing in Al-Diwaniyah wastewater treatment plant in Iraq during the study period (2005-2016). The strength of the influent wastewater entering the plant varied from medium to high in strength. High concentrations of BOD5 and COD in the effluent were obtained due to the poor performance of the plant. This was observed from the BOD5 /COD ratios that did not confirm with the typical ratios for the treated sewage. To improve the performance of this plant, regression equations for BOD5 and COD removal percentages were suggested which can be used to facilitate evaluation of liquid waste and optimal control process. The equations
... Show MoreBackground:In this study,TiO2 layer was thermally grown as a diffusion barrier on CP Ti substrate prior to electrophoretic deposition of HA coatings, to improve the coating’s compatibility also macro and micro pores in nano Hydroxyapatite dual coatings were created and their effect on the bond strength between the bone and implant was evaluated. Materials and methods: Electrophoretic Deposition technique (EPD) was used to obtain coatings for each one of four types of Hydroxyapatite(HA)on CP Ti screws (micro HA, nano HA, dual nano HA with micro pores, dual nano HA with macro pores) where carbon particles used as fugitive material to be removed by thermal treatment to create porosity.For examination of the changes occurred on the subs
... Show MoreIn this investigation, the mechanical properties and microstructure of Metal Matrix Composites (MMCs) of Al.6061 alloy reinforced by ceramic materials SiC and Al2O3 with different additive percentages 2.5, 5, 7.5, and 10 wt.% for the particle size of 53 µm are studied. Metal matrix composites were prepared by stir casting using vortex technique and then treated thermally by solution heat treatment at 530 0C for 1 hr. and followed by aging at 175 0C with different periods. Mechanical tests were done for the samples before and after heat treatment, such as impact test, hardness test, and tensile test. Also, the microstructure of the metal matrix composites was examine
... Show MoreOur research aimed to find a new material that can be an efficient heavy metal free flame retardant for plasticized poly(vinyl chloride) comparable to the conventional flame retardants. One of these extraordinary materials is Oxydtron using as an admixture for concrete. Oxydtron showed unexpected efficiency as a flame retardant agent and an excellent heat stabilizer as well. Limiting oxygen index (LOI), static heat stability, Congo-red, and differential scanning calorimetry (DSC) were carried out. The thermal tests proved that Oxydtron is suitable to improve plasticized poly(vinyl chloride) performance at high temperatures applications in terms of flame retarding and thermal stability
Many of the proposed methods introduce the perforated fin with the straight direction to improve the thermal performance of the heat sink. The innovative form of the perforated fin (with inclination angles) was considered. Present rectangular pin fins consist of elliptical perforations with two models and two cases. The signum function is used for modeling the opposite and the mutable approach of the heat transfer area. To find the general solution, the degenerate hypergeometric equation was used as a new derivative method and then solved by Kummer's series. Two validation methods (previous work and Ansys 16.0‐Steady State Thermal) are considered. The strong agreement of the validation results (0.3
Autorías: Naji Kadhim Ali, Saleh Radhi Amish, Wameedh Shamil Kamil. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 4, 2022. Artículo de Revista en Dialnet.
This effort is related to describe and assess the performance of the Iraqi cement sample planned for oil well-cementing jobs in Iraq. In this paper, major cementing properties which are thickening time, compressive strength, and free water in addition to the rheological properties and filtration of cement slurry underneath definite circumstances are experimentally tested. The consequences point to that the Iraqi cement after special additives encounter the requests of the API standards and can consequently is used in cementing jobs for oil wells. At this research, there is a comparative investigation established on experimental work on the effectiveness of some additives that considered as waste materials which are silica fume, bauxite,
... Show MoreThis effort is related to describe and assess the performance of the Iraqi cement sample planned for oil well-cementing jobs in Iraq. In this paper, major cementing properties which are thickening time, compressive strength, and free water in addition to the rheological properties and filtration of cement slurry underneath definite circumstances are experimentally tested. The consequences point to that the Iraqi cement after special additives encounter the requests of the API standards and can consequently is used in cementing jobs for oil wells. At this research, there is a comparative investigation established on experimental work on the effectiveness of some additives that considered as waste materials which are silica fume, baux
... Show More