Thermal properties of soils are important in buried structures contact problems. Although laboratory is distinctly advantageous in measuring the thermal conductivity of soil under ideal condition, given the ability to simulate relatively large-scale in place of soil bed, the field thermal conductivity of soil is not yet commonly used in many types of research. The use of only a laboratory experiment to estimate thermal conductivity may be the key reason for overestimation or underestimation it. In this paper, an intensive site investigation including field thermal conductivity tests for six different subsoil strata were performed using a thermal probe method (TLS-100) to systematically understanding the effects of field dry density, water content and soil type. Results were obtained from the alluvial plain lands in the middle part of Iraq, in an attempt to find a correlation between different soil characteristics and the thermal conductivity. It is shown that clayey soil generally had lower thermal conductivity than sandy soil. Thermal conductivity can potentially be affected by the proposed soil low or high plasticity. It is evident that in general, the measured field thermal conductivity value for the lean (low plasticity) silty clay increases with an increase in depth due to the increase of the degree of saturation; however, decreases with an increase in depth for the fat (high plasticity) silty clay. The field water content of the soil in the study obtained here increases so does the thermal conductivity of the soil for most the sites. Further investigations are required, to understand the effects of other environmental conditions with the seasons. This is especially helpful to the future of geotechnical engineering when designing geothermal systems. © 2021 Elsevier Ltd. All rights reserved.
The Web Design Quality Index, known as WDQI, was applied to assess the quality of websites for six Iraqi universities, namely Basra University, Mosul, Muthanna, Samarra, Dijla University College, and Al-Isra University College. The results of the index showed that the universities of Basra and Dijla University College had the highest value, at 71.07 and 70.39, respectively. Its final evaluation metric was that the website of these two universities needed a slight improvement. As for the rest of the other universities, the final values of the index ranged from 64.72-69.71. When the final values of the index are displayed on the final evaluation scale, it appears that the websites of the four universities need many improvements. The study
... Show MoreThis research was carried out to evaluate the activity of crude juice of Olive on some cytogenetic parameters in mice like chromosomal aberration (CAs) and micronuclei formation(MN). The results showed that there was no significant difference between the crude juice (green and black)in CAs(3.77,4.10)and MN(0.25,0.25) in comparison with negative control (3.39,0.22)respectively. The interaction effect between the crude before and after treatment with mutagen MMC showed that the crude is one of the vital inhibitors of the mutagen by its ability in reducing the percentages of both the CAs and MN in bone marrow cells in mice.
A new benzylidene derivative, namely N-benzylidene-5-phenyl-1,3,4-thiadiazol-2-amine (BPTA), has been synthesized and instrumentally confirmed with Elemental Analysis (CHN), Nuclear Magnetic Resonance (NMR), and Fourier Transform Infrared Spectroscopy (FT-IR). Titanium Dioxide (TiO2) nanoparticles (NPs) were synthesized and characterized by X-ray. The mutualistic complementary dependence of BPTA with TiO2 nanoparticles as anti-corrosive inhibitor on mild steel (MS) in 1.0 M hydrochloric acid has been tested at various concentrations and various temperatures. The methodological work was achieved by gravimetric measurement methods complemented with surface analysis. The synthesized inhibitor concentrations were 0.1 mM to 0.5 mM and the temper
... Show MoreGypseous soils are common in several regions in the world including Iraq, where more than 28.6% of its surface is covered with this type of soil. This soil, with high gypsum content, causes different problems for construction and strategic projects. As a result of water flow through the soil mass, the permeability and chemical arrangement of these soils varies with time due to the solubility and leaching of gypsum. In this study, the soil of 36% gypsum content, was taken from one location about 100 km southwest of Baghdad, where the samples were taken from depths (0.5 - 1) m below the natural ground and mixed with (3%, 6%, 9%) of Copolymer and Novolac polymer to improve the engineering properties that include: collapsibility, perm
... Show MoreGypseous soil is prevalent in arid and semi-arid areas, is from collapsible soil, which contains the mineral gypsum, and has variable properties, including moisture-induced volume changes and solubility. Construction on these soils necessitates meticulous assessment and unique designs due to the possibility of foundation damage from soil collapse. The stability and durability of structures situated on gypseous soils necessitate close collaboration with specialists and careful, methodical preparation. It had not been done to find the pattern of failure in the micromechanical behavior of gypseous sandy soil through particle image velocity (PIV) analysis. This adopted recently in geotech
The best design of subsurface trickle irrigation systems requires knowledge of water and salt distribution patterns around the emitters that match the root extraction and minimize water losses. The transient distribution of water and salt in a two-dimensional homogeneous Iraqi soil domain under subsurface trickle irrigation with different settings of an emitter is investigated numerically using 2D-HYDRUS software. Three types of Iraqi soil were selected. The effect of altering different values of water application rate and initial soil water content was investigated in the developed model. The coefficient of correlation (R2) and the root-mean-square error (RMSE) was used to validate the predicted numerical res
... Show MoreRadiation treatment has long been the conventional approach for treating nasopharyngeal cancer (NPC) tumors due to its anatomic features, biological characteristics, and radiosensitivity. The most common treatment for nasopharyngeal carcinoma is radiotherapy. This study aimed to assess the better quality of radiotherapy treatment techniques using intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT). The VMAT and IMRT are comparative techniques. Forty patients with nasopharyngeal carcinoma and forwarded for radiotherapy were treated with both advanced techniques, IMRT and VMAT, using eclipse software from Varian. The x-ray energy was set at 6 MV. The total prescribed dose was 70 Gy. The results show that the
... Show MoreThis paper aims to evaluate large-scale water treatment plants’ performance and demonstrate that it can produce high-level effluent water. Raw water and treated water parameters of a large monitoring databank from 2016 to 2019, from eight water treatment plants located at different parts in Baghdad city, were analyzed using nonparametric and multivariate statistical tools such as principal component analysis (PCA) and hierarchical cluster analysis (HCA). The plants are Al-Karkh, Sharq-Dijlah, Al-Wathba, Al-Qadisiya Al-Karama, Al-Dora, Al-Rasheed, Al-Wehda. PCA extracted six factors as the most significant water quality parameters that can be used to evaluate the variation in drinkin