Currently, with the huge increase in modern communication and network applications, the speed of transformation and storing data in compact forms are pressing issues. Daily an enormous amount of images are stored and shared among people every moment, especially in the social media realm, but unfortunately, even with these marvelous applications, the limited size of sent data is still the main restriction's, where essentially all these applications utilized the well-known Joint Photographic Experts Group (JPEG) standard techniques, in the same way, the need for construction of universally accepted standard compression systems urgently required to play a key role in the immense revolution. This review is concerned with Differential pulse code modulation (DPCM) and pixel-based techniques, where the spatial domain is exploited to compress images efficiently in terms of compression performance and preserving quality. The new pixel-based method overcomes predictive coding constraints with fewer residues and higher compression ratios.
The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreBackground: five clinical phases were described in patients with chronic (HBV) infection: HBeAg- positive HBV infection, HBeAg- positive chronic HB, HBeAg negative HBV infection, HBeAg-negative CHB and occult HBV infection. Aim: This study aimed to determine the incidence of the unclassified phase (gray zone) in chronic hepatitis B patients and its significant in the clinical practice. Patients and methods: The study was conducted retrospectively on 109 patients' who have HBsAg positive for more than 6 months. The data recorded include; HbeAg and anti-HBe Ab, ultrasound of the abdomen, HBV DNA load and alanine aminotransferase (ALT), accordingly; we classify the patients to known clinical phases. Patients who were unfit one of these phases
... Show MoreField experimented were examined the effects of Piper nigrum and Urtica dioica extracts on the gray mold disease in tomato that caused by Botrytis cinerea. To evaluate the inducing resistance of these extracts, many treatments were sprayed on tomato leaves, including methanolic and aquatic extracts, Silver nano particles biosynthesis (AgNPs) and water as (control).
The results indicated that the resistance of tomato plants was increased when tomato plant sprayed first with Methanolic P. nigrum extracts and after 4 hours sprayed with B. cinerea. Also, spraying with methanolic and aquatic AgNPs P. nigrum extract were reduced gray mold disease. These results were showed that
... Show MoreThe internet of medical things (IoMT), which is expected the lead to the biggest technology in worldwide distribution. Using 5th generation (5G) transmission, market possibilities and hazards related to IoMT are improved and detected. This framework describes a strategy for proactively addressing worries and offering a forum to promote development, alter attitudes and maintain people's confidence in the broader healthcare system without compromising security. It is combined with a data offloading system to speed up the transmission of medical data and improved the quality of service (QoS). As a result of this development, we suggested the enriched energy efficient fuzzy (EEEF) data offloading technique to enhance the delivery of dat
... Show MoreProduction sites suffer from idle in marketing of their products because of the lack in the efficient systems that analyze and track the evaluation of customers to products; therefore some products remain untargeted despite their good quality. This research aims to build a modest model intended to take two aspects into considerations. The first aspect is diagnosing dependable users on the site depending on the number of products evaluated and the user's positive impact on rating. The second aspect is diagnosing products with low weights (unknown) to be generated and recommended to users depending on logarithm equation and the number of co-rated users. Collaborative filtering is one of the most knowledge discovery techniques used positive
... Show MoreA novel method for Network Intrusion Detection System (NIDS) has been proposed, based on the concept of how DNA sequence detects disease as both domains have similar conceptual method of detection. Three important steps have been proposed to apply DNA sequence for NIDS: convert the network traffic data into a form of DNA sequence using Cryptography encoding method; discover patterns of Short Tandem Repeats (STR) sequence for each network traffic attack using Teiresias algorithm; and conduct classification process depends upon STR sequence based on Horspool algorithm. 10% KDD Cup 1999 data set is used for training phase. Correct KDD Cup 1999 data set is used for testing phase to evaluate the proposed method. The current experiment results sh
... Show MoreThis abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivota
... Show MoreThe science of information security has become a concern of many researchers, whose efforts are trying to come up with solutions and technologies that ensure the transfer of information in a more secure manner through the network, especially the Internet, without any penetration of that information, given the risk of digital data being sent between the two parties through an insecure channel. This paper includes two data protection techniques. The first technique is cryptography by using Menezes Vanstone elliptic curve ciphering system, which depends on public key technologies. Then, the encoded data is randomly included in the frame, depending on the seed used. The experimental results, using a PSNR within avera
... Show More