Currently, with the huge increase in modern communication and network applications, the speed of transformation and storing data in compact forms are pressing issues. Daily an enormous amount of images are stored and shared among people every moment, especially in the social media realm, but unfortunately, even with these marvelous applications, the limited size of sent data is still the main restriction's, where essentially all these applications utilized the well-known Joint Photographic Experts Group (JPEG) standard techniques, in the same way, the need for construction of universally accepted standard compression systems urgently required to play a key role in the immense revolution. This review is concerned with Differential pulse code modulation (DPCM) and pixel-based techniques, where the spatial domain is exploited to compress images efficiently in terms of compression performance and preserving quality. The new pixel-based method overcomes predictive coding constraints with fewer residues and higher compression ratios.
The applications of Multilevel Converter (MLC) are increased because of the huge demand for clean power; especially these types of converters are compatible with the renewable energy sources. In addition, these new types of converters have the capability of high voltage and high power operation. A Nine-level converter in three modes of implementation; Diode Clamped-MLC (DC-MLC), Capacitor Clamped-MLC (CC-MLC), and the Modular Structured-MLC (MS-MLC) are analyzed and simulated in this paper. Various types of Multicarrier Modulation Techniques (MMTs) (Level shifted (LS), and Phase shifted (PS)) are used for operating the proposed Nine level - MLCs. Matlab/Simulink environment is used for the simulation, extracting, and ana
... Show MoreA fixed firefighting system is a key component of fire safeguarding and reducing fire danger. It is installed as a permanent component in a structure to protect the entire or a portion of the building and its contents. The study aims to review the previous studies that deal with the evaluation of fire safety measures and their use in resolving problems associated with fire threats in buildings. For this reason, a number of previous studies in this field were reviewed compared with the NFPA code. The findings revealed that regulatory developments over the last several decades had created an atmosphere conducive to innovation. This has resulted in a growth in the number of fixed firefighting system types now obtainable. Th
... Show MoreThe purpose of this study is to investigate the research on artificial intelligence algorithms in football, specifically in relation to player performance prediction and injury prevention. To accomplish this goal, scholarly resources including Google Scholar, ResearchGate, Springer, and Scopus were used to provide a systematic examination of research done during the last ten years (2015–2025). Through a systematic procedure that included data collection, study selection based on predetermined criteria, categorisation based on AI applications in football, and assessment of major research problems, trends, and prospects, almost fifty papers were found and analysed. Summarising AI applications in football for performance and injury p
... Show MoreThe recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreThe effect of using three different interpolation methods (nearest neighbour, linear and non-linear) on a 3D sinogram to restore the missing data due to using angular difference greater than 1° (considered as optimum 3D sinogram) is presented. Two reconstruction methods are adopted in this study, the back-projection method and Fourier slice theorem method, from the results the second reconstruction proven to be a promising reconstruction with the linear interpolation method when the angular difference is less than 20°.
Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreWithin this work, to promote the efficiency of organic-based solar cells, a series of novel A-π-D type small molecules were scrutinised. The acceptors which we designed had a moiety of N, N-dimethylaniline as the donor and catechol moiety as the acceptor linked through various conjugated π-linkers. We performed DFT (B3LYP) as well as TD-DFT (CAM-B3LYP) computations using 6-31G (d,p) for scrutinising the impact of various π-linkers upon optoelectronic characteristics, stability, and rate of charge transport. In comparison with the reference molecule, various π-linkers led to a smaller HOMO–LUMO energy gap. Compared to the reference molecule, there was a considerable red shift in the molecules under study (A1–A4). Therefore, based on
... Show MoreA robust video-bitrate adaptive scheme at client-aspect plays a significant role in keeping a good quality of video streaming technology experience. Video quality affects the amount of time the video has turned off playing due to the unfilled buffer state. Therefore to maintain a video streaming continuously with smooth bandwidth fluctuation, a video buffer structure based on adapting the video bitrate is considered in this work. Initially, the video buffer structure is formulated as an optimal control-theoretic problem that combines both video bitrate and video buffer feedback signals. While protecting the video buffer occupancy from exceeding the limited operating level can provide continuous video str
... Show More