Currently, with the huge increase in modern communication and network applications, the speed of transformation and storing data in compact forms are pressing issues. Daily an enormous amount of images are stored and shared among people every moment, especially in the social media realm, but unfortunately, even with these marvelous applications, the limited size of sent data is still the main restriction's, where essentially all these applications utilized the well-known Joint Photographic Experts Group (JPEG) standard techniques, in the same way, the need for construction of universally accepted standard compression systems urgently required to play a key role in the immense revolution. This review is concerned with Differential pulse code modulation (DPCM) and pixel-based techniques, where the spatial domain is exploited to compress images efficiently in terms of compression performance and preserving quality. The new pixel-based method overcomes predictive coding constraints with fewer residues and higher compression ratios.
Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreImage retrieval is an active research area in image processing, pattern recognition, and
computer vision. In this proposed method, there are two techniques to extract the feature
vector, the first one is applying the transformed algorithm on the whole image and the second
is to divide the image into four blocks and then applying the transform algorithm on each part
of the image. In each technique there are three transform algorithm that have been applied
(DCT, Walsh Transform, and Kekre’s Wavelet Transform) then finding the similarity and
indexing the images, useing the correlation between feature vector of the query image and
images in database. The retrieved method depends on higher indexing number. <
One of the significant stages in computer vision is image segmentation which is fundamental for different applications, for example, robot control and military target recognition, as well as image analysis of remote sensing applications. Studies have dealt with the process of improving the classification of all types of data, whether text or audio or images, one of the latest studies in which researchers have worked to build a simple, effective, and high-accuracy model capable of classifying emotions from speech data, while several studies dealt with improving textual grouping. In this study, we seek to improve the classification of image division using a novel approach depending on two methods used to segment the images. The first
... Show MoreAcute appendicitis is the most common surgical abdominal emergency. Its clinical diagnosis remains a challenge to surgeons, so different imaging options were introduced to improve diagnostic accuracy. Among these imaging modality choices, diagnostic medical sonography (DMS) is a simple, easily available, and cost effective clinical tool. The purpose of this study was to assess the accuracy of DMS, in the diagnosis of acute appendicitis compared to the histopathology report, as a gold standard. Between May 2015 and May 2016, 215 patients with suspected appendicitis were examined with DMS. The DMS findings were recorded as positive and negative for acute appendicitis and compared with the histopathological results, as a gold standard
... Show MoreIn this study, an analysis of re-using the JPEG lossy algorithm on the quality of satellite imagery is presented. The standard JPEG compression algorithm is adopted and applied using Irfan view program, the rang of JPEG quality that used is 50-100.Depending on the calculated satellite image quality variation, the maximum number of the re-use of the JPEG lossy algorithm adopted in this study is 50 times. The image quality degradation to the JPEG quality factor and the number of re-use of the JPEG algorithm to store the satellite image is analyzed.
Image compression is very important in reducing the costs of data storage transmission in relatively slow channels. Wavelet transform has received significant attention because their multiresolution decomposition that allows efficient image analysis. This paper attempts to give an understanding of the wavelet transform using two more popular examples for wavelet transform, Haar and Daubechies techniques, and make compression between their effects on the image compression.