Braces in straight bridge systems improve the lateral-torsional buckling resistance of the girders by reducing the unbraced length, while in horizontally curved and skew bridges, the braces are primary structural elements for controlling deformations by engaging adjacent girders to act as a system to resist the potentially large forces and torques caused by the curved or skewed geometry of the bridge. The cross-frames are usually designed as torsional braces, which increase the overall strength and stiffness of the individual girders by creating a girder system that translates and rotates as a unit along the bracing lines. However, when they transmit the truck’s live load forces, they can produce fatigue cracks at their connections to the girders. This paper investigates the effect of using different details of cross-frames to girder connections and their impacts on girder stresses and twists. Field testing data of skewed steel girders bridge under various load passes of a weighed load vehicle incorporated with a validated 3D full-scale finite element model are presented in this study. Two types of connections are investigated, bent plate and pipe stiffener. The two connection responses are then compared to determine their impact on controlling the twist of girder cross-sections adjacent to cross-frames and also to mitigate the stresses induced due to live loads. The results show that the use of a pipe stiffener can reduce the twist of the girder’s cross-section adjacent to the cross-frames up to 22% in some locations. In terms of stress ranges, the pipe stiffener tends to reduce the stress range by 6% and 4% for the cross-frames located in the abutment and pier skew support regions respectively.
Steel-concrete-steel (SCS) structural element solutions are rising due to their advantages over conventional reinforced concrete in terms of cost and strength. The impact of SCS sections with various core materials on the structural performance of composites has not yet been fully explored experimentally, and in this work, both slag and polypropylene fibers were incorporated in producing eco-friendly steel-concrete-steel composite sections. This study examined the ductility, ultimate strength, failure modes, and energy absorption capacities of steel-concrete-steel filled with eco-friendly concrete, enhanced by polypropylene fiber (PPF) to understand its impact on modern structural projects. Eco-friendly concrete was produced by the partial
... Show MoreTo assess the contribution of Doppler broadening and examine the
Compton profile, the Compton energy absorption cross sections are
measured and calculated using formulas based on a relativistic
impulse approximation. The Compton energy-absorption cross
sections are evaluated for different elements (Fe, Zn, Ag, Au and Hg)
and for a photon energy range (1 - 100 keV). With using these crosssections,
the Compton component of the mass–energy absorption
coefficient was derived, where the electron momentum prior to the
scattering event caused a Doppler broadening of the Compton line.
Also, the momentum resolution function was evaluated in terms of
incident and scattered photon energy and scattering angle. The res
Background: As photochemical reaction that can stiffen the cornea, CXL is the only promising method of preventing progression of keratectasia such as KC and secondary ectasia following refractive surgery. The aim of CXL is to stabilize the underlying condition with a small chance of visual improvement. Objective: To show the sequences of changes in visual acuity and topographic outcomes during 1 year post CXL for patients with progressive Keratoconus.Type of the study: Cross sectional studyMethods: CXL procedure was done for 45 eyes with progressive KC. The following parameters had been monitored pre operatively, 1, 3, 6 and 12 months postoperatively: K apex, K2, corneal thickness at thinnest location, anterior and posterior elevation po
... Show MoreObjectives. This study was carried out to quantitatively evaluate and compare the sealing ability of Endoflas by using differentobturation techniques. Materials and Methods. After 42 extracted primary maxillary incisors and canines were decoronated, theircanals were instrumented with K files of size ranging from #15 to #50. In accordance with the obturation technique, the sampleswere divided into three experimental groups, namely, group I: endodontic pressure syringe, group II: modified disposable syringe,and group III: reamer technique, and two control groups. Dye extraction method was used for leakage evaluation. Data wereanalyzed using one-way ANOVA and Dunnett’s T3 post hoc tests. The level of significance was set at p<0:05. Results.
... Show MoreAbstract
In the present work, thermal diffusivity and heat capacity measurements have been investigated in temperature range between RT and 1473 K for different duplex stainless steel supplied by Outokumpu Stainless AB, Sweden. The purpose of this study is to get a reliable thermophysical data of these alloys and to study the effect of microstructure on the thermal diffusivity and heat capacity value. Results show the ferrite content in the duplex stainless steel increased with temperature at equilibrium state. On the other hand, ferrite content increased with increasing Cr/Ni ratio and there is no significant effect of ferrite content on the thermal diffusivity value at room temperature. Furthermore, the heat capacity of all sam
... Show MoreThis paper presents comprehensive analysis and investigation for 1550nm and 1310nm ring optical modulators employing an electro-optic polymer infiltrated silicon-plasmonic hybrid phase shifter. The paper falls into two parts which introduce a theoretical modeling framework and performance assessment of these advanced modulators, respectively. In this part, analytical expressions are derived to characterize the coupling effect in the hybrid phase shifter, transmission function of the modulator, and modulator performance parameters. The results can be used as a guideline to design compact and wideband optical modulators using plasmonic technology
Background: The marginal adaptation has a key role in the success and longevity of the fixed dental restoration, which is affected by the impression and the fabrication techniques .The objective of this in vitro study was to evaluate and compare the marginal fitness of lithium disilicate crowns using two different digital impression techniques (direct and indirect techniques) and two different fabrication techniques (CAD/CAM and Press techniques). Materials and Methods: Thirty two sound upper first premolar teeth of comparable size extracted for orthodontic reason were selected in this study .Standardized preparation of all teeth samples were carried out with modified dental surveyor to receive all ceramic crown restoration with 1 mm deep
... Show MoreIt included the introduction to the research and its importance, as the knee joint is one of the important joints in the human body that are susceptible to injury, and among these injuries is the roughness of the knee that occurs as a result of weakness and imbalance in the work of the quadriceps muscle, so its treatment is through rehabilitation exercises to treat weakness and gain flexibility and strength.Hence the importance of the research by developing rehabilitation exercises with different resistances in the water medium and restoring flexibility and muscular strength for patients with knee roughness for ages from 30-40 years, and the experimental method was used to solve the research problem, and the research sample included (6) of
... Show More