With the spread of global markets for modern technical education and the diversity of programs for the requirements of the local and global market for information and communication technology, the universities began to race among themselves to earn their academic reputation. In addition, they want to enhance their technological development by developing IMT systems with integrated technology as the security and fastest response with the speed of providing the required service and sure information and linking it The network and using social networking programs with wireless networks which in turn is a driver of the emerging economies of technical education. All of these facilities opened the way to expand the number of students and solve the problem of accumulation, collection and analysis of data by storing it with large, expanded and automatically interconnected databases between university places and departments to provide services adapted to the desire of demand. This research dealt with a sample from of the academic’s opinions and students. The sample is 319 questionnaires. It concluded that each of the infrastructure, devices, Internet of things, smart classrooms, and administrative database, with the presence of the fifth-generation network and its equipment, have a statistically significant correlation with technical education technology.
In this research, the focus was on estimating the parameters on (min- Gumbel distribution), using the maximum likelihood method and the Bayes method. The genetic algorithmmethod was employed in estimating the parameters of the maximum likelihood method as well as the Bayes method. The comparison was made using the mean error squares (MSE), where the best estimator is the one who has the least mean squared error. It was noted that the best estimator was (BLG_GE).
Simulation of the Linguistic Fuzzy Trust Model (LFTM) over oscillating Wireless Sensor Networks (WSNs) where the goodness of the servers belonging to them could change along the time is presented in this paper, and the comparison between the outcomes achieved with LFTM model over oscillating WSNs with the outcomes obtained by applying the model over static WSNs where the servers maintaining always the same goodness, in terms of the selection percentage of trustworthy servers (the accuracy of the model) and the average path length are also presented here. Also in this paper the comparison between the LFTM and the Bio-inspired Trust and Reputation Model for Wireless Sensor Network
... Show MoreIn this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained
The bandwidth requirements of telecommunication network users increased rapidly during the last decades. Optical access technologies must provide the bandwidth demand for each user. The passive optical access networks (PONs) support a maximum data rate of 100 Gbps by using the Orthogonal Frequency Division Multiplexing (OFDM) technique in the optical access network. In this paper, the optical broadband access networks with many techniques from Time Division Multiplexing Passive Optical Networks (TDM PON) to Orthogonal Frequency Division Multiplex Passive Optical Networks (OFDM PON) are presented. The architectures, advantages, disadvantages, and main parameters of these optical access networks are discussed and reported which have many ad
... Show MoreA comprehensive review focuses on 3D network-on-chip (NoC) simulators and plugins while paying attention to the 2D simulators as the baseline is presented. Discussions include the programming languages, installation configuration, platforms and operating systems for the respective simulators. In addition, the simulator’s properties and plugins for design metrics evaluations are addressed. This review is intended for the early career researchers starting in 3D NoC, offering selection guidelines on the right tools for the targeted NoC architecture, design, and requirements.
In this paper, we investigate and characterize the effects of multi-channel and rendezvous protocols on the connectivity of dynamic spectrum access networks using percolation theory. In particular, we focus on the scenario where the secondary nodes have plenty of vacant channels to choose from a phenomenon which we define as channel abundance. To cope with the existence of multi-channel, we use two types of rendezvous protocols: naive ones which do not guarantee a common channel and advanced ones which do. We show that, with more channel abundance, even with the use of either type of rendezvous protocols, it becomes difficult for two nodes to agree on a common channel, thereby, potentially remaining invisible to each other. We model this in
... Show MoreThe problem motivation of this work deals with how to control the network overhead and reduce the network latency that may cause many unwanted loops resulting from using standard routing. This work proposes three different wireless routing protocols which they are originally using some advantages for famous wireless ad-hoc routing protocols such as dynamic source routing (DSR), optimized link state routing (OLSR), destination sequenced distance vector (DSDV) and zone routing protocol (ZRP). The first proposed routing protocol is presented an enhanced destination sequenced distance vector (E-DSDV) routing protocol, while the second proposed routing protocol is designed based on using the advantages of DSDV and ZRP and we named it as
... Show MoreThis paper presents a minimum delay congestion control in differentiated Service communication networks. The premium and ordinary passage services based fluid flow theory is used to build the suggested structure in high efficient manage. The established system is capable to adeptly manage both the physical network resource limitations and indefinite time delay related to networking system structure.