Preferred Language
Articles
/
OBhTL5UBVTCNdQwC6iop
Elimination of phenol by sonoelctrochemical process utilizing graphite, stainless steel, and titanium anodes: optimization by taguchi approach
...Show More Authors

   Phenol is one of the worst-damaging organic pollutants, and it produces a variety of very poisonous organic intermediates, thus it is important to find efficient ways to eliminate it. One of the promising techniques is sonoelectrochemical processing. However, the type of electrodes, removal efficiency, and process cost are the biggest challenges. The main goal of the present study is to investigate the removal of phenol by a sonoelectrochemical process with different anodes, such as graphite, stainless steel, and titanium. The best anode performance was optimized by using the Taguchi approach with an L16 orthogonal array. the degradation of phenol sonoelectrochemically was investigated with three process parameters: current density (CD) (25, 50, 75, and 100 mA/cm2), time (1, 2, 3, 4 h), and phenol concentration (100, and 200 mg/l). Signal-to-noise (S/N) ratio and analysis of variance (ANOVA) were utilized to examine the impact of each factor. The optimal conditions for phenol removal were 100 mA/cm2, 100 mg/l of phenol, and 4 hours of electrolysis. Under optimal operating conditions, the phenol removal efficiency was 80.99%. The CD was the most influential factor on phenol elimination effectiveness, while the phenol concentration had the least impact.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 19 2022
Journal Name
Iraqi Journal Of Science
Optimization of photoluminescence properties of Porous silicon by adding gold nanoparticles
...Show More Authors

In this work, the photoluminescence spectra (PL) of porous silicon (PS) have been modified by adding gold nanoparticles (AuNPs) to PS layer. PS was produced via Photo electro-chemical etching (PECE) method of n-type Si wafer with resistivity of about (10 Ω.cm) and (100) orientation. Laser wavelength of (630 nm) and illumination intensity of about (30 mW/cm2), etching current density of (10mA/cm2), and etching time of (4 min) were used during the etching process. The bare PS before metallic deposition process and porous silicon/gold nanoparticles (PS/AuNPs) structures were investigated by X-Ray Diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-Ray (EDX). The photoluminescence spectra were investigated as a fu

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 11 2022
Journal Name
3rd International Scientific Conference Of Alkafeel University (iscku 2021)
Elimination of the broadening in X-ray diffraction lines profile for nanoparticles by using the analysis of diffraction lines method
...Show More Authors

In this research, the results of the Integral breadth method were used to analyze the X-ray lines to determine the crystallite size and lattice strain of the zirconium oxide nanoparticles and the value of the crystal size was equal to (8.2nm) and the lattice strain (0.001955), and then the results were compared with three other methods, which are the Scherer and Scherer dynamical diffraction theory and two formulas of the Scherer and Wilson method.the results were as followsScherer crystallite size(7.4nm)and lattice strain(0.011968),Schererdynamic method crystallite size(7.5 nm),Scherrer and Wilson methodcrystallite size( 8.5nm) and lattice strain( 0.001919).And using another formula for Schearer and Wilson methodwe obtain the size of the c

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Wed Jun 29 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Kinetics and Energetic Parameters Study of Phenol Removal from Aqueous Solution by Electro-Fenton Advanced Oxidation Using Modified Electrodes with PbO2 and Graphene
...Show More Authors

The Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current dens

... Show More
View Publication Preview PDF
Crossref (9)
Crossref
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Hydrothermal Process to Prepare Novel Phase Titanium Sub-Oxide Ti6O11 from Nano Rutile Titanium Dioxide Particles with Different Autodave Reactors
...Show More Authors

       Hydrothermal process method using different dimensions reactors with volume 100 ml (homemade) was employed to prepare titanium sub-oxide Ti6O11, where  one gram of TiO2 nanoparticles 30-50 nm and 3M (20 ml) of NaOH as suspension was used . The samples are characterized using X-ray diffraction, Raman spectroscopy, and Field Emission Scanning Electron Microscopy (FE-SEM). X-ray diffraction revealed the formation of sub- oxide titanium Ti6O11 of triclinic structure with Magneli phase, when the temperature applied was 363K for 9h.While FE-SEM showed uniform hierarchical structures with planar grass-like shapes. A novel phase has been found from rutile titanium.

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Oct 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study the Efficiency of Poly Nicotine Amide as Anticorrosion Coating on Stainless Steel and Study Its Biological Activity
...Show More Authors

Using an electrochemical polymerization technique at room temperature, poly nicotine amide (PNA) was produced from the monomer nicotine amide (NA) in aqueous solution. The structure of polymer layer generated on the stainless steel surface (316 L) (working electrode) is investigated by Fourier Transmission Infrared Region (FT-IR). The anti-corrosion activity of polymer coating on the stainless steel (SS 316 L) is investigated by electrochemical polarization in 0.20M solution of HCl at 293-323K. The graphene -modified polymer film-coated SS had greater protection efficiency (PE percent) when compared to Nano ZnO -modified polymer film-coated SS. For the corrosion process of SS 316 L, kinetic and thermo-dynamic parameters of activation are

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Al-khwarizmi Engineering Journal
An Experimental Study on Electrochemical Grinding Parameters on Hardness and Material Removal Rate for Stainless Steel 316
...Show More Authors

Electrochemical Grinding (ECG) process is a mechanically assisted electrochemical process for material processing. The process is able to successfully machine electrically conducting harder materials at faster rate with improved surface finish and dimensional control. This research studies the effect of applied current, electrolyte concentration, spindle speed and the gap between workpiece and tool on hardness and material removal rate during electrochemical grinding for stainless steel 316. The characteristic features of the electrochemical grinding process are explored through Taguchi-design-based experimental studies. The better hardness can be obtained at 10 A of the current, 150 g/l of the electrolyte concentration, 0.3 mm of gap an

... Show More
View Publication Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Performance of Electro-Fenton Process for Phenol Degradation Using Nickel Foam as a Cathode
...Show More Authors

Toxic substances have been released into water supplies in recent decades because of fast industrialization and population growth. Fenton electrochemical process has been addressed to treat wastewater which is very popular because of its high efficiency and straightforward design. One of the advanced oxidation processes (AOPs) is electro-Fenton (EF) process, and electrode material significantly affects its performance. Nickel foam was chosen as the source of electro-generated hydrogen peroxide (H2O2) due to its good characteristics. In the present study, the main goals were to explore the effects of operation parameters (FeSO4 concentration, current density, and electrolysis time) on the catalytic perform

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Performance of Electro-Fenton Process for Phenol Degradation Using Nickel Foam as a Cathode
...Show More Authors

Toxic substances have been released into water supplies in recent decades because of fast industrialization and population growth. Fenton electrochemical process has been addressed to treat wastewater which is very popular because of its high efficiency and straightforward design. One of the advanced oxidation processes (AOPs) is electro-Fenton (EF) process, and electrode material significantly affects its performance. Nickel foam was chosen as the source of electro-generated hydrogen peroxide (H2O2) due to its good characteristics. In the present study, the main goals were to explore the effects of operation parameters (FeSO4 concentration, current density, and electrolysis time) on the catalytic performance that was optimized by r

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 17 2017
Journal Name
Al-khwarizmi Engineering Journal
Formation of Compressive Residual Stress by Face Milling Steel AISI 1045
...Show More Authors

Abstract

     Machining residual stresses correlate very closely with the cutting parameters and the tool geometries. This research work aims to investigate the effect of cutting speed, feed rate and depth of cut on the surface residual stress of steel AISI 1045 after face milling operation. After each milling test, the residual stress on the surface of the workpiece was measured by using X-ray diffraction technique. Design of Experiment (DOE) software was employed using the response surface methodology (RSM) technique with a central composite rotatable design to build a mathematical model to determine the relationship between the input variables and the response. The results showed that both

... Show More
View Publication Preview PDF
Publication Date
Tue Nov 01 2022
Journal Name
Journal Of Engineering
Study The Impact of Geopolymer Mortar Reinforced by Micro Steel Fibers
...Show More Authors

In this research, geopolymer mortar had to be designed with 50% to 50% slag and fly ash with and without 1% micro steel fiber at curing temperature of 240℃. The molarity of alkaline solution adjusted with 12 molar sodium hydroxid to sodium silicate was 2 to 1, reaspectivly. The heat of curing increased the geopolymerization proceses of geoplymer mortar, which led to increasing strength, giving the best result and early curing age. The heat was applied for two days by four hours each day. It was discovered in the impact test that the value first crack of each mix was somewhat similar, but the failure increased 72%  for the mixture that did not contain fiber. For the energy observation results it was shown that the mixt

... Show More
View Publication Preview PDF
Crossref (1)
Crossref