Background: to evaluate the effect of different dentifrices on the surface roughness of two composite resins (nanofilled-based and nanoceramic – based composite resins). Materials and methods: Forty specimens (diameter 12 mm and height of 2mm) prepared from different composite resin materials: Z350 (nanofilled composite, and Ceram-X (nanoceramic) .they were subjected to brushing simulation equivalent to the period of 1 year. The groups assessed were a control group brushed with distilled water (G1), Opalescence whitening toothpasteR (G2), Colgate sensitive pro-relief (G3) and Biomed Charcoal Toothpaste (G4). The initial and final roughness of each group was tested by surface roughness tester. The results were statistically analyzed using ANOVA and Tueky test at 0.05 significance level. Results: the surface roughness of the two tested composites brushed with the tested dentifrices was statistically higher than the roughness found in control group. Comparison among the three types of dentifrices showed that there was a statistically high significant difference in the surface roughness among all subgroups. Charcoal Toothpaste showed the highest surface roughness increase. Conclusion: Whitening dentifrices increase the surface roughness of dental composite thereby compromising its durability. Changes in composite depended on the material itself and the dentifrices used.
The major aim of this research is study the effect of the type of lightweight aggregate (Porcelinite and Thermostone), type and ratio of the pozzolanic material(SF and HRM) and the use of different ratios of w/cm ratio(0.32 and 0.35) on the properties of SCLWC in the fresh and hardened state. SF and HRM are used in three percentage 5%,10%, and 15% as a partial replacement by weight of
cement for all types of SCLWC. The requirements of self-compatibility for SCC are fulfilled by using the high performance superplasticizer (G51) at 1.2liter per 100 kg of cement. The values of air dry density and compressive strength at age of 28 days within the limits of structural lightweight concrete. The air dry density and compressive strength at a
Background: The bonded orthodontic retainer constructed from multistrand wire and composite is an efficient esthetic retainer, which can be maintained long-term. Clinical failures of bonded orthodontic retainers, most commonly at the wire/composite interface, have been reported. This in vitro investigation aimed to evaluate the tensile forces of selected multistrand wires and composite materials that are available for use in the construction of bonded fixed retainers. Materials and Methods: The study sample includes 120 wires with three types of retainer wires (3 braided strands\ Orthotechnology, 8 braided strands\ G&H Orthodontics, 6 coaxial strands\ Orthoclassic wires), two types of adhesive (flowable\ Orthotechnology, non flowable\ G&H O
... Show MoreThe zirconia ceramic restoration (ZCR) is used as substitutes for the metal-ceramic restoration. Clinical studies demonstrating of ZCRs showed a high fracture incidence of veneering layer than metal-ceramic restorations. This attributed to the low bond strength of zirconia to veneering ceramic as a result of lacking of glass content in its matrix. Surface treatment was proposed to improve the bonding strength between zirconia and veneering ceramic. Several studies revealed that some treatment such as airborne particle abrasion (APA) is responsible for generating chipping of veneering ceramic. The study aimed to develop a new zirconia coatings to increase bonding strength between zirconia substrate and veneering porcelain. Three groups of 15
... Show MoreThe study was conducted at the College of Agricultural Engineering Sciences - University of Baghdad in 2022. It aimed to improve the growth of the European black Henbane plant (
Background: The study aim was to evaluate thermocycling effect on microleakage of occlusal and cervical margins of MOD cavity filled with bulk filled composites in comparison to incrementally placed nanohybrid composite and to evaluate the difference in microleakage between enamel and dentin margins for the three materials groups. Materials and method: Forty eight maxillary first premolars were prepared with MOD cavities. Samples were divided into three groups of sixteen teeth according to material used: Grandio: Grandio. SDR: SDR +Grandio. X-tra: X-tra base + Grandio. Each group was subdivided into two according to be thermocycled or not. After 24 hrs immersion in 2% methylene blue, samples weresectioned and microleakage was estimated. Res
... Show MoreShumblan (SH) is one of the most undesirable aquatic plants widespread in the irrigation channels and water bodies. This work focuses on boosting the biogas potential of shumblan by co-digesting it with other types of wastes without employing any chemical or thermal pretreatments as done in previous studies. A maximum biogas recovery of 378 ml/g VS was reached using shumblan with cow manure as inoculum in a ratio of 1:1. The methane content of the biogas was 55%. Based on volatile solid (VS) and C/N ratios, biogas productions of 518, 434, and 580 ml/g VS were obtained when the shumblan was co-digested with food wastes (SH:F), paper wastes (SH:P), and green wastes (SH:G) respectively. No significant changes of methane contents were observ
... Show MorePVC/Kaolinite composites were prepared by the melt intercalation method. Mechanical properties, thermal properties, flammability and water absorption percentage of prepared samples were tested. Mechanical characteristic such as tensile strength, elongation at break; hardness and impact strength (charpy type) were measured for all samples. It was found that the tensile strength and elongation at break of PVC composites decreased with increasing kaolinite loading. Also, the hardness of the composites increases with increase in filler content .The impact strength of the composites at the beginning increases at lower kaolinite loadings is due to the lack of kaolin adhesion to the matrix. However, at higher kaolin loadings. This severe agglom
... Show MoreMost of the recent works related to the construction industry in Iraq are focused on investigating the validity of local raw materials as alternatives to the imported materials necessary for some practical applications, especially in thermal and sound insulation. This investigation includes the use of limestone dust as partial substitution of cement in combination with foam agent and silica fume to produce sustainable Lightweight Foam Concrete (LWFC). This study consists of two stages. In the first stage, trial mixes were performed to find the optimum dosage of foam agent. Limestone dust was used as a partial replacement for cement. Chemical analysis and fineness showed great similarity with cement. Many concrete mixes were prepared
... Show MoreSludge from stone-cutting (SSC) factories and stone mines cannot be used as decorative stones, stone powder, etc. These substances are left in the environment and cause environmental problems. This study aim is to produce artificial stone composite (ASC) using sludge from stone cutting factories, cement, unsaturated resin, water, silicon carbide nanoparticles (SiC-NPs), and nano-graphene oxide (NGO) as fillers. Nano graphene oxide has a hydrophobic plate structure that water is not absorbed due to the lack of surface tension on these plates. NGO has a significant effect on the properties of artificial stone due to its high specific surface area and low density in the composite. Its uniform distribution in ASC is very low due to its hydropho
... Show More