Preferred Language
Articles
/
OBepL48BVTCNdQwCo14C
Distinguishing Cartoons Images from Real –Life Images
...Show More Authors

Publication Date
Wed Apr 01 2020
Journal Name
Plant Archives
Land cover change detection using satellite images based on modified spectral angle mapper method
...Show More Authors

This research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classificatio

... Show More
Scopus (3)
Scopus
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Calculating Surface Roughness for a Large Scale SEM Images by Mean of Image Processing
...Show More Authors

View Publication
Scopus (29)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Mon Apr 01 2024
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
Classification of grapevine leaves images using VGG-16 and VGG-19 deep learning nets
...Show More Authors

The successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi

... Show More
View Publication
Scopus (22)
Crossref (19)
Scopus Crossref
Publication Date
Thu Oct 01 2009
Journal Name
Journal Of The College Of Languages (jcl)
Lexical Bundles: Identification and Distinguishing Features
...Show More Authors

It is not often  easy to identify a certain group of words as a lexical bundle, since the same set of words can be, in different situations, recognized as idiom,  a collocation, a lexical phrase or a lexical bundle. That is, there are many cases where the overlap among the four types is plausible. Thus, it is important to extract the most identifiable and distinguishable characteristics with which a certain group of words, under certain conditions, can be recognized as a lexical bundle, and this is the task of this paper.

View Publication Preview PDF
Publication Date
Thu Dec 03 2015
Journal Name
Iraqi Journal Of Science
New multispectral images classification method based on MSR and Skewness implementing on various sensor scenes
...Show More Authors

Publication Date
Sat Jan 10 2015
Journal Name
British Journal Of Applied Science & Technology
The Use of Cubic Bezier Interpolation, Biorthogonal Wavelet and Quadtree Coding to Compress Color Images
...Show More Authors

In this paper, an efficient method for compressing color image is presented. It allows progressive transmission and zooming of the image without need to extra storage. The proposed method is going to be accomplished using cubic Bezier surface (CBI) representation on wide area of images in order to prune the image component that shows large scale variation. Then, the produced cubic Bezier surface is subtracted from the image signal to get the residue component. Then, bi-orthogonal wavelet transform is applied to decompose the residue component. Both scalar quantization and quad tree coding steps are applied on the produced wavelet sub bands. Finally, adaptive shift coding is applied to handle the remaining statistical redundancy and attain e

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Fri Feb 17 2023
Journal Name
Sustainability
Sustainable Utilization of Machine-Vision-Technique-Based Algorithm in Objective Evaluation of Confocal Microscope Images
...Show More Authors

Confocal microscope imaging has become popular in biotechnology labs. Confocal imaging technology utilizes fluorescence optics, where laser light is focused onto a specific spot at a defined depth in the sample. A considerable number of images are produced regularly during the process of research. These images require methods of unbiased quantification to have meaningful analyses. Increasing efforts to tie reimbursement to outcomes will likely increase the need for objective data in analyzing confocal microscope images in the coming years. Utilizing visual quantification methods to quantify confocal images with naked human eyes is an essential but often underreported outcome measure due to the time required for manual counting and e

... Show More
View Publication
Scopus (5)
Scopus Clarivate Crossref
Publication Date
Mon Oct 03 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
Use of learning methods for gender and age classification based on front shot face images
...Show More Authors

Publication Date
Thu Apr 01 2010
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
The Invariant Moments Based With Wavelet Used To Decide the Authintication and Originality of Images
...Show More Authors

Publication Date
Tue May 01 2012
Journal Name
Iraqi Journal Of Physics
Early detection of breast cancer mass lesions by mammogram segmentation images based on texture features
...Show More Authors

Mammography is at present one of the available method for early detection of masses or abnormalities which is related to breast cancer. The most common abnormalities that may indicate breast cancer are masses and calcifications. The challenge lies in early and accurate detection to overcome the development of breast cancer that affects more and more women throughout the world. Breast cancer is diagnosed at advanced stages with the help of the digital mammogram images. Masses appear in a mammogram as fine, granular clusters, which are often difficult to identify in a raw mammogram. The incidence of breast cancer in women has increased significantly in recent years.
This paper proposes a computer aided diagnostic system for the extracti

... Show More
View Publication Preview PDF