In recent years, Wireless Sensor Networks (WSNs) are attracting more attention in many fields as they are extensively used in a wide range of applications, such as environment monitoring, the Internet of Things, industrial operation control, electric distribution, and the oil industry. One of the major concerns in these networks is the limited energy sources. Clustering and routing algorithms represent one of the critical issues that directly contribute to power consumption in WSNs. Therefore, optimization techniques and routing protocols for such networks have to be studied and developed. This paper focuses on the most recent studies and algorithms that handle energy-efficiency clustering and routing in WSNs. In addition, the prime issues in these networks are discussed and summarized using comparison tables, including the main features, limitations, and the kind of simulation toolbox. Energy efficiency is compared between some techniques and showed that according to clustering mode “Distributed” and CH distribution “Uniform”, HEED and EECS are best, while in the non-uniform clustering, both DDAR and THC are efficient. According to clustering mode “Centralized” and CH distribution “Uniform”, the LEACH-C protocol is more effective.
A cantilevered piezoelectric beam with a tip mass at its free end is a common energy harvester configuration. This paper introduces a new principle of designing such a harvester which increases the generated voltage without changing the natural frequency of the harvester: The attraction force between two permanent magnets is used to add stiffness to the system. This magnetic stiffening counters the effect of the tip mass on the natural frequency. Three setups incorporating piezoelectric bimorph cantilevers of the same type in different mechanical configurations are compared theoretically and experimentally to investigate the feasibility of this principle. Theoretical and experimental results show that magnetically stiffe
... Show MoreOily carwash wastewater is a high organic and chemical wastewater. This paper targeted to investigate a treatment to decrease the water consumption and contaminants in car-washing stations. Electrocoagulation combined with ultrasonic energy (Sono-Electrocoagulation) was suggested so that the carwash wastewater is treated to be reused. The effect of both the voltage and time of treatment on the removal of COD, turbidity, conductivity, and total dissolved solids (TDS) were studied at constant initial pH 7 and electrode distance 2 cm. The results showed the best results of removal COD, turbidity, TDS, and reduce electrical conductivity is when the voltage was 30 V and a treatment time of 90 minutes.
<
... Show MoreA large amount of thermal energy is generated from burning hazardous chemical wastes, and the temperature of the flue gases in hazardous waste incinerators reaches up to (1200 °C). The flue gases are cooled to (40°C) and are treated before emission. This thermal energy can be utilized to produce electrical power by designing a system suitable for dangerous flue gases in the future depending on the results of much research about using a proto-type small steam power plant that uses safe fuel to study and develop the electricity generation process with water tube boiler which is manufactured experimentally with theoretical development for some of its parts which are inefficient in experimental work. The studied system gen
... Show MoreHerein, we report designing a new Δ (delta‐shaped) proton sponge base of 4,12‐dihydrogen‐4,8,12‐triazatriangulene (compound
Refrigerant R134a has been widely utilized in automotive air conditioning systems (AACSs); R134a has a high global warming potential (GWP) of 1430 despite having zero ozone depletion potential (ODP). Coming refrigeration systems must include refrigerants with low GWP and zero ODP. The aim of this experimental study is to evaluate the thermal performance of an (AAC) with different values of compressor speeds, i.e., (1000, 1700, and 2400 rpm) and two thermal loads, i.e., (500 and 1000 Watt) with the absence and presence of liquid suction heat exchanger (LSHX) using R134a. The results showed that adding LSHX enhanced the COP cycle by 7.18%, 10.7%, and 3.09% for the first, second, and third speed, respectively, at 500 Watt, while the en
... Show More
In this work, a test room was built in Baghdad city, with (2*1.5*1.5) m3 in dimensions, while the solar chimneys (SC) were designed with aspect ratio (ar) bigger than 12. Test room was supplied by many solar collectors; vertical single side of air pass with ar equals 25, and tilted 45o double side of air passes with ar equals 50 for each pass, both collectors consist of flat thermal energy storage box collector (TESB) that covered by transparent clear acrylic sheet, third type of collector is array of evacuated tubular collectors with thermosyphon in 45o instelled in the bottom of TESB of vertical SC. The TESB was
... Show MoreTo create a highly efficient photovoltaic-thermal (PV-T) system and maximise the energy and exergy efficiency, this study aims to propose an innovative configuration of a PV-T system comprising wavy tubes with twisted-tape inserts. Following the validation of a numerical model, a parametric study has been conducted to assess the geometrical effects of twisted tape and wavy tubes, as well as the coolant fluid type and velocity, on the overall performance of a PV-T system, located in Shiraz, Iran. It is found that employing twisted tape improves the energy and exergy efficiency by approx. 6.3%. The best configuration yields 12.4% and 16.8% increase in energy and exergy efficiency compared to conventional PV systems. This is achieved at 15% vo
... Show MoreThe development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifesp
... Show MoreRenewable energy sources - realities of the present and future options
Many of the directories indicate that the global energy system begin with a period of transition from total dependence on fossil energy sources, particularly oil, Into a new era in which renewable energy sources play an important role in meeting the growing needs of energy demand. There are many factors that will contribute to the strengthening of this trend towards transformation, which also will decide how quickly this transformation of renewable energy systems effectively in the global system of energy demand.
These factors, In brief: the size of environmental pollution and cl
... Show MoreThe development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifesp
... Show More