In recent years, Wireless Sensor Networks (WSNs) are attracting more attention in many fields as they are extensively used in a wide range of applications, such as environment monitoring, the Internet of Things, industrial operation control, electric distribution, and the oil industry. One of the major concerns in these networks is the limited energy sources. Clustering and routing algorithms represent one of the critical issues that directly contribute to power consumption in WSNs. Therefore, optimization techniques and routing protocols for such networks have to be studied and developed. This paper focuses on the most recent studies and algorithms that handle energy-efficiency clustering and routing in WSNs. In addition, the prime issues in these networks are discussed and summarized using comparison tables, including the main features, limitations, and the kind of simulation toolbox. Energy efficiency is compared between some techniques and showed that according to clustering mode “Distributed” and CH distribution “Uniform”, HEED and EECS are best, while in the non-uniform clustering, both DDAR and THC are efficient. According to clustering mode “Centralized” and CH distribution “Uniform”, the LEACH-C protocol is more effective.
Integrating Renewable Energy (RE) into Distribution Power Networks (DPNs) is a choice for efficient and sustainable electricity. Controlling the power factor of these sources is one of the techniques employed to manage the power loss of the grid. Capacitor banks have been employed to control phantom power, improving voltage and reducing power losses for several decades. The voltage sag and the significant power losses in the Iraqi DPN make it good evidence to be a case study proving the efficiency enhancement by adjusting the RE power factor. Therefore, this paper studies a part of the Iraqi network in a windy and sunny region, the Badra-Zurbatya-11 kV feeder, in the Wasit governorate. A substation of hybrid RE sources is connected to this
... Show MoreThe energy expectation values for Li and Li-like ions ( , and ) have been calculated and examined within the ground state and the excited state in position space. The partitioning technique of Hartree-Fock (H-F) has been used for existing wave functions.
Collective C2 transitions in 32S are discussed for higher
energy configurations by comparing the calculations of transition
strength B(CJ )with the experimental data. These configurations
are taken into account through a microscopic theory including
excitations from the core orbits and the model space orbits with nħω
excitations.
Excitations up to n=10 are considered. However n=6 seems to
be large enough for a sufficient convergence. The calculations
include the lowest seven 2+0 states of 32S.
With the revolutionized expansion of the Internet, worldwide information increases the application of communication technology, and the rapid growth of significant data volume boosts the requirement to accomplish secure, robust, and confident techniques using various effective algorithms. Lots of algorithms and techniques are available for data security. This paper presents a cryptosystem that combines several Substitution Cipher Algorithms along with the Circular queue data structure. The two different substitution techniques are; Homophonic Substitution Cipher and Polyalphabetic Substitution Cipher in which they merged in a single circular queue with four different keys for each of them, which produces eight different outputs for
... Show More<span>One of the main difficulties facing the certified documents documentary archiving system is checking the stamps system, but, that stamps may be contains complex background and surrounded by unwanted data. Therefore, the main objective of this paper is to isolate background and to remove noise that may be surrounded stamp. Our proposed method comprises of four phases, firstly, we apply k-means algorithm for clustering stamp image into a number of clusters and merged them using ISODATA algorithm. Secondly, we compute mean and standard deviation for each remaining cluster to isolate background cluster from stamp cluster. Thirdly, a region growing algorithm is applied to segment the image and then choosing the connected regi
... Show MoreBrachytherapy treatment is primarily used for the certain handling kinds of cancerous tumors. Using radionuclides for the study of tumors has been studied for a very long time, but the introduction of mathematical models or radiobiological models has made treatment planning easy. Using mathematical models helps to compute the survival probabilities of irradiated tissues and cancer cells. With the expansion of using HDR-High dose rate Brachytherapy and LDR-low dose rate Brachytherapy for the treatment of cancer, it requires fractionated does treatment plan to irradiate the tumor. In this paper, authors have discussed dose calculation algorithms that are used in Brachytherapy treatment planning. Precise and less time-consuming calculations
... Show MoreAlgorithms using the second order of B -splines [B (x)] and the third order of B -splines [B,3(x)] are derived to solve 1' , 2nd and 3rd linear Fredholm integro-differential equations (F1DEs). These new procedures have all the useful properties of B -spline function and can be used comparatively greater computational ease and efficiency.The results of these algorithms are compared with the cubic spline function.Two numerical examples are given for conciliated the results of this method.