Double-layer micro-perforated panels (MPPs) have been studied extensively as sound absorption systems to increase the absorption performance of single-layer MPPs. However, existing proposed models indicate that there is still room for improvement regarding the frequency bands of absorption for the double-layer MPP. This study presents a double-layer MPP formed with two single MPPs with inhomogeneous perforation backed by multiple cavities of varying depths. The theoretical formulation is developed using the electrical equivalent circuit method to calculate the absorption coefficient under a normal incident sound. The simulation results show that the proposed model can produce absorption coefficient with wider absorption bandwidth compared with the conventional double- and even triple-layer MPPs. The bandwidth can be increased to higher frequency by decreasing the cavity depth behind a sub-MPP with small hole diameter and a high perforation ratio, and to lower frequency by increasing the cavity depth behind a sub-MPP with large hole diameter and a small perforation ratio. The experimental data, measured by impedance tube, are in good agreement with the predicted results.
This research sought to present a concept of cross-sectional data models, A crucial double data to take the impact of the change in time and obtained from the measured phenomenon of repeated observations in different time periods, Where the models of the panel data were defined by different types of fixed , random and mixed, and Comparing them by studying and analyzing the mathematical relationship between the influence of time with a set of basic variables Which are the main axes on which the research is based and is represented by the monthly revenue of the working individual and the profits it generates, which represents the variable response And its relationship to a set of explanatory variables represented by the
... Show MoreVarious theories on learning have been developed with increasing frequency in the last
few decades. In tandem with this, Multiple Intelligence theory appeared as a new approach to
education as well as an important theory in the field of language learning. Gardner explains
that all human beings have different intelligence fields and a potential to develop them. These
intelligences are (verbal-linguistic, logical-mathematical, visual-spatial, musical, bodilykinesthetic,
interpersonal, intrapersonal, naturalistic, and Existential).
This study aims at investigating Multiple Intelligences of Iraqi college EFL students. To
achieve the aims of the study, a questionnaire is adopted according to Birmingham model
which incl
In the present study, free convection heat and mass transfer of fluid in a square packed bed enclosure is numerically investigated. For the considered geometrical shape, the left vertical wall of enclosure was assumed to be kept at high temperature and concentration while the opposite wall was kept at low temperature and concentration with insulating both the top and bottom walls of enclosure. The Brinkman– Forchheimer extended Darcy model was used to solve the momentum equations, while the energy equations for fluid and solid phases were solved by using the local thermal non-equilibrium (LTNE) model.Computations are performed for a range of the Darcy number from 10-5 to 10-1, the porosity from 0.5 to 0.9, and buoyancy ratio from -15 t
... Show MoreThis paper is dealing with an experimental study to show the influence of the geometric characteristics of the vortex generators VG son the thickness of the boundary layer (∂) and drag coefficients (CD) of the flat plate. Vortex generators work effectively on medium and high angles of attack, since they are "hidden" under the boundary layer and practically ineffective at low angles.
The height of VGs relative to the thickness of the boundary layer enables us to study the efficacy of VGs in delaying boundary layer separation. The distance between two VGs also has an effect on the boundary layer if we take into
... Show MoreThe purpose of this paper to discriminate between the poetic poems of each poet depending on the characteristics and attribute of the Arabic letters. Four categories used for the Arabic letters, letters frequency have been included in a multidimensional contingency table and each dimension has two or more levels, then contingency coefficient calculated.
The paper sample consists of six poets from different historical ages, and each poet has five poems. The method was programmed using the MATLAB program, the efficiency of the proposed method is 53% for the whole sample, and between 90% and 95% for each poet's poems.
Recovery of time-dependent thermal conductivity has been numerically investigated. The problem of identification in one-dimensional heat equation from Cauchy boundary data and mass/energy specification has been considered. The inverse problem recasted as a nonlinear optimization problem. The regularized least-squares functional is minimised through lsqnonlin routine from MATLAB to retrieve the unknown coefficient. We investigate the stability and accuracy for numerical solution for two examples with various noise level and regularization parameter.
The thermal properties (thermal transfer and thermal expansion coefficient) of the enhanced epoxy resin (MWCNT / x-TiO2) were studied by weight ratios with the values (0%, 3%, 5%, 7% and 10%) and a constant ratio of 3% of MWCNT. The ultrasonic technology was used to prepare the neat and composites which were then poured into Teflon molds according to standard conditions. Thermo-analyzer sensor technology was used to measure thermal transfer (thermal conductivity, thermal flow, thermal diffusion, thermal energy and heat resistance). The thermal conductivity, flow, and thermal conductivity values were increased sequentially by increasing the weight ratio of the filler while the results of stored energy values an
... Show MoreExperimental and numerical studies have been conducted for the effect of injected air bubbles on the heat transfer coefficient through the water flow in a vertical pipe under the influence of uniform heat flux. The investigated parameters were water flow rate of (10, 14 and 18) lit/min, air flow rate of (1.5, 3 and 4) lit/min for subjected heat fluxes of (27264, 36316 and 45398) W/m2. The energy, momentum and continuity equations were solved numerically to describe the motion of flow. Turbulence models k-ε was implemented. The mathematical model is using a CFD code Fluent (Ansys15). The water was used as continuous phase while the air was represented as dispersed. phase. The experimental work includes design, build and instrument a test
... Show MoreCorrelation and path coefficient analysis were worked out for ten morphological traits in 30 three-way crosses of maize. Phenotypic and genotypic correlation analysis indicated that ear length; row numbers per ear, grain numbers per row, leaf area and leaves numbers had a positive significant correlation with grain yield per plant. Further partitioning of correlation coefficients into direct and indirect effects showed that traits days to silking, row numbers per row and leaves numbers had a positive direct effect on grain yield per plant. The traits ear length, grain numbers per row and leaf area had a maximum total effect on grain yield. Furthermore, PCA analysis has gave interested