Reservoir characterization is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling. This comprehensive research paper delves into the complex interplay of rock materials, rock formation techniques, and geological modeling techniques for improving reservoir quality. The research plays an important role dominated by petrophysical factors such as porosity, shale volume, water content, and permeability—as important indicators of reservoir properties, fluid behavior, and hydrocarbon potential. It examines various rock cataloging techniques, focusing on rock aggregation techniques and self-organizing maps (SOMs) to identify specific and anomalous rock faces. Furthermore, the paper explores the adoption of advanced methods, including hydraulic flow units (HFU), providing a fine-grained understanding of reservoir heterogeneity and contributing to the prediction of flow dynamics. The final section includes structural geological models, petrophysical data collected, rock type classification, and spatial data to better represent the reservoir bottom structure. It provides a valuable resource for researchers, geologists, and engineers seeking to characterize reservoirs and make optimal decisions on hydrocarbon exploration and production. It is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling.
Abstract
Semiconductor-based gas sensors were prepared, that use n-type tin oxide (SnO2) and tin oxide: zinc oxide composite (SnO2)1-x(ZnO)x at different x ratios using pulse laser deposition at room temperature. The prepared thin films were examined to reach the optimum conditions for gas sensing applications, namely X-ray diffraction, Hall effect measurements, and direct current conductivity. It was found that the optimum crystallinity and maximum electron density, corresponding to the minimum charge carrier mobility, appeared at 10% ZnO ratio. This ratio appeared has the optimum NO2 gas sensitivity for 5% gas concentration at 300 °C working temperat
... Show MoreThe aim of this study was to evaluate tensile properties of low and medium carbon ferrite -martensite dual phase steel, and the effect cryogenic treatment at liquid nitrogen temperature (-196 ºC) on its properties. Low carbon steel (C12D) and medium carbon steels (C32D & C42D) were used in this work. For each steel grade, five groups of specimens were prepared according to the type of heat treatment. The first group was normalized, the second group was normalized and subsequently subjected to cryogenic treatment then tempered at (200 ºC) for one hour, the third group was quenched from intercritical annealing temperature of (760 ºC) to obtain dual phase (DP) steel, the fourth and fifth groups were both quenched from (760 ºC), but
... Show MoreBackground: The surface properties of the titanium alloy plays a significant role in the bond of the dental implant with living bone and modification of the implant surface could enhance osseointegration. This study was aimed to investigate the effect of different durations of heat treatment on the surface properties of titanium alloy for dental implants. Materials and methods: Twenty disks of (Ti-6Al-4V) alloy were prepared. The sample was divided into four test groups to study the effect of different duration of heat treatment to the surface topography; surface chemistry, titanium oxide layer thickness, blood contact angle, & blood drop diameter of titanium alloy samples were investigated to evaluate the effect of different durations of
... Show MoreIn this study, the physical, and mechanical properties of low-cost and biocomposites were evaluated. The walnut shell and date palm frond fibers were thermally treated in an oven at a temperature of 70°C and then chemically treated with NaOH and distilled water solution, after these treatments, the biocomposite materials will be thermally treated again at 50°C. This procedure was performed for three types of biocomposite; Walnut shell Fiber Reinforced Polymer (WFRP), Date palm Fiber Reinforced Polymer (DFRP), and Hybrid Fiber Reinforced Polymer (HFRP), whereas the biocomposite sheets consisting of 30% biofibers and 70% unsaturated polyester, the mechanical test specimens were cut by a CNC machine according to ASTM standards. The e
... Show MoreThe technology in continuous and quick development, that reflects in all parts of our life and interred both scientific and practical fields. Marketing is one of them, a customer’s way to deal with choosing and demanding the product deferent from the traditional way. Some of the buying processes are electronic now, therefore the current research is identifying the digital channels that entered the world of marketing and influenced the activities and types that fall under this name and how it affects in positioning strategy, which is how to install the product or brand in the mind of the customer and was dimensions (brand identity, brand personality, brand communication, brand awareness, brand image), The researcher took t
... Show MoreObjectives: To study the effect of providing tertiary (specialized) health care for type 2 diabetic patients to meet the WHO and ADA standards and glycemic targets.
Method: Six months, Jan. – Jun. 2010, cohort study was conducted on 600 adult diabetics who registered in the National Diabetes Center (NDC) / Al-Mustansiriya University, Baghdad – Iraq. They were followed for 3- 6 months; each time patients were examined physically and their blood pressure, height, weight and BMI were measured. Fasting blood samples were taken from all patients to test the FPG, HbA1c, T.Chol, TG, HDL and LDL.
Results: Patients’ age was 52.85±15.56 year and the male/female ratio was 1.01, the median duration of disease was 7 years and their BMI w
The aim of this paper is to investigate the effects of Nd:YAG laser shock processing (LSP) on micro-hardness and surface roughness of 86400Cu-Zn alloy. X-ray fluorescence technique was used to analyze the chemical composition of this alloy. LSP treatment was performed with a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The results show that laser shock processing can significantly increase. The micro-hardness and surface roughness of the LSP-treated sample. Vickers diamond indenter was used to measure the micro-hardness of all samples with different laser pulse energy and the different number of laser pulses. It is found that the metal hardness can be significantly increased to more than 80% by increasing the laser energy and t
... Show Moreيعد علم التدريب الرياضي الحديث عملية تربوية علمية مبنية على اسس صحيحة هدفها وصول اللاعبين الى التكامل في الاداء الفني وهذا يتم عن طريق التأثير المنظم والدقيق بواسطة استعمال التمارين البدنية التي تحدث تغيرات خاصة في عمل اعضاء واجهزة جسم الرياضي والتي بدورها تؤدي الى رفع كفاءة الاعضاء والاجهزة لتحقيق الانجازات الرياضية العالية ولقد استعملت الباحثتان اسلوب حديث من اساليب التدريب الرياضي من اجل تطوير تحم
... Show MoreThe financial markets are one of the sectors whose data is characterized by continuous movement in most of the times and it is constantly changing, so it is difficult to predict its trends , and this leads to the need of methods , means and techniques for making decisions, and that pushes investors and analysts in the financial markets to use various and different methods in order to reach at predicting the movement of the direction of the financial markets. In order to reach the goal of making decisions in different investments, where the algorithm of the support vector machine and the CART regression tree algorithm are used to classify the stock data in order to determine
... Show More