Reservoir characterization is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling. This comprehensive research paper delves into the complex interplay of rock materials, rock formation techniques, and geological modeling techniques for improving reservoir quality. The research plays an important role dominated by petrophysical factors such as porosity, shale volume, water content, and permeability—as important indicators of reservoir properties, fluid behavior, and hydrocarbon potential. It examines various rock cataloging techniques, focusing on rock aggregation techniques and self-organizing maps (SOMs) to identify specific and anomalous rock faces. Furthermore, the paper explores the adoption of advanced methods, including hydraulic flow units (HFU), providing a fine-grained understanding of reservoir heterogeneity and contributing to the prediction of flow dynamics. The final section includes structural geological models, petrophysical data collected, rock type classification, and spatial data to better represent the reservoir bottom structure. It provides a valuable resource for researchers, geologists, and engineers seeking to characterize reservoirs and make optimal decisions on hydrocarbon exploration and production. It is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling.
An accurate assessment of the pipes’ conditions is required for effective management of the trunk sewers. In this paper the semi-Markov model was developed and tested using the sewer dataset from the Zublin trunk sewer in Baghdad, Iraq, in order to evaluate the future performance of the sewer. For the development of this model the cumulative waiting time distribution of sewers was used in each condition that was derived directly from the sewer condition class and age data. Results showed that the semi-Markov model was inconsistent with the data by adopting ( 2 test) and also, showed that the error in prediction is due to lack of data on the sewer waiting times at each condition state which can be solved by using successive conditi
... Show More74 fanners were randomily selected from the Lc:ital. of 406 fanners using the Modern Irrigation System up to November , 2000 , for the purpose of wide adoptation of such system. Rcsults indicated according to the data which has been obtained and statistically analysed by the statistical package for the Social Sciences (SPSS) program showed that the majority of the farmers adopted this new system of irrigation due to the increase in the yield up to 5" .
This paper present a simple and sensitive method for the determination of DL-Histidine using FIA-Chemiluminometric measurement resulted from oxidation of luminol molecule by hydrogen peroxide in alkaline medium in the presence of DL-Histidine. Using 70?l. sample linear plot with a coefficient of determination 95.79% for (5-60) mmol.L-1 while for a quadratic relation C.O.D = 96.44% for (5-80) mmol.L-1 and found that guadratic plot in more representative. Limit of detection was 31.93 ?g DL-Histidine (S/N = 3), repeatability of measurement was less that 5% (n=6). Positive and negative ion interferances was removed by using minicolume containing ion exchange resin located after injection valve position.
The majority of real-world problems involve not only finding the optimal solution, but also this solution must satisfy one or more constraints. Differential evolution (DE) algorithm with constraints handling has been proposed to solve one of the most fundamental problems in cellular network design. This proposed method has been applied to solve the radio network planning (RNP) in the forthcoming 5G Long Term Evolution (5G LTE) wireless cellular network, that satisfies both deployment cost and energy savings by reducing the number of deployed micro base stations (BSs) in an area of interest. Practically, this has been implemented using constrained strategy that must guarantee good coverage for the users as well. Three differential evolution
... Show MoreThe proton momentum distributions (PMD) and the elastic
electron scattering form factors F(q) of the ground state for some
even mass nuclei in the 2p-1f shell for 70Ge, 72Ge, 74Ge and 76Ge are
calculated by using the Coherent Density Fluctuation Model (CDFM)
and expressed in terms of the fluctuation function (weight function)
|F(x)|2. The fluctuation function has been related to the charge
density distribution (CDD) of the nuclei and determined from the
theory and experiment. The property of the long-tail behavior at high
momentum region of the proton momentum distribution has been
obtained by both the theoretical and experimental fluctuation
functions. The calculated form factors F (q) of all nuclei under s
Circular data (circular sightings) are periodic data and are measured on the unit's circle by radian or grades. They are fundamentally different from those linear data compatible with the mathematical representation of the usual linear regression model due to their cyclical nature. Circular data originate in a wide variety of fields of scientific, medical, economic and social life. One of the most important statistical methods that represents this data, and there are several methods of estimating angular regression, including teachers and non-educationalists, so the letter included the use of three models of angular regression, two of which are teaching models and one of which is a model of educators. ) (DM) (MLE) and circular shrinkage mod
... Show MoreBackground: Coronavirus disease 2019 (COVID-19) is
one of the updated challenges facing the whole world.
Objective: To identify the characteristics risk factors that
present in humans to be more liable to get an infection
than others.
Methods: A cross-sectional study was conducted for
positively confirmed 35 patients with polymerase chain
reaction in Wasit province at AL-Zahraa Teaching
Hospital from the period of March 13th till April 20th. All
of them full a questionnaire regarded by risk factors and
other comorbidities. Data were analyzed by SPSS version
23 using frequency tables and percentage. For numerical
data, the median, and interquartile range (IQR) were used.
Differences between categoric
The study showed that there are (28) plant families present in Al-Razzaza Lake. The families are (Amaranthaceae, Amaryllidaceae, Aizoaceae, Apiaceae, Apocynaceae, Asteraceae, Brassicaceae, Boraginaceae, Capparaceae, Caryophyllaceae, Cistaceae, Colchicaceae, Convolvulaceae, Cynomoriaceae, Fabaceae, Frankeniaceae, Lamiaceae, Liliaceae, Malvaceae, Orobanchaceae, Plantaginaceae, Poaceae, Polygonaceae, Ranunculaceae, Solanaceae, Tamaricaceae,Typhaceae, Zygophyllaceae). Asteraceae family is the largest number of species found in abundance in this lake, followed by the Fabaceae family.