Reservoir characterization is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling. This comprehensive research paper delves into the complex interplay of rock materials, rock formation techniques, and geological modeling techniques for improving reservoir quality. The research plays an important role dominated by petrophysical factors such as porosity, shale volume, water content, and permeability—as important indicators of reservoir properties, fluid behavior, and hydrocarbon potential. It examines various rock cataloging techniques, focusing on rock aggregation techniques and self-organizing maps (SOMs) to identify specific and anomalous rock faces. Furthermore, the paper explores the adoption of advanced methods, including hydraulic flow units (HFU), providing a fine-grained understanding of reservoir heterogeneity and contributing to the prediction of flow dynamics. The final section includes structural geological models, petrophysical data collected, rock type classification, and spatial data to better represent the reservoir bottom structure. It provides a valuable resource for researchers, geologists, and engineers seeking to characterize reservoirs and make optimal decisions on hydrocarbon exploration and production. It is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling.
Biological drugs have an active substance that is made by a living organism or derived from a living organism. They are one of the important therapy options used in a wide range of diseases especially life-threatening diseases. Biological therapy opens new opportunities for treating different diseases for which drug therapy is minimal, but they have considerable differences in the safety consequences in comparison with non-biological drugs. The aim of the current study was to assess the post-marketing safety profile of biological drugs used in Iraqi hospitals by the analysis of the reported adverse drug reactions regarding their severity, seriousness, preventability, expectedness, and outcome. It is a retrospective study of the individu
... Show MoreDetection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreIn this research project, a tip-tilting angle of a photovoltaic solar cell was developed to increase generated electrical power output. An active, accurate, and simple dual-axis tracking system was designed by using an Arduino Uno microprocessor. The system consisted of two sections: software and apparatus (hardware). It was modified by using a group of light-dependent resistor sensors, and two DC servo motors were utilized to rotate the solar panel to a location with maximum sunlight. These components were arranged in a mechanical configuration with the gearbox. The three locations of the solar cell were chosen according to the tilt angle values, at zero angles, which included an optimal 33-degree angle for the Baghdad location and
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreElectricity consumption for household purposes in urban areas widely affects the general urban consumption compared to other commercial and industrial uses, as household electricity consumption is affected by many factors related to the physical aspects of the residential area such as temperature, housing unit area, and coverage ratio, as well as social and economic factors such as family size and income, to reach the extent of the influence of each of the above factors on the amount of electricity consumed for residential uses, a selected sample of a residential area in the city of Baghdad was studied and a field survey conducted of the characteristics of that sample and the results analyzed and modeled statistically in relation to the amo
... Show MoreRenewable energy resources have become a promissory alternative to overcome the problems related to atmospheric pollution and limited sources of fossil fuel energy. The technologies in the field of renewable energy are used also to improve the ventilation and cooling in buildings by using the solar chimney and heat exchanger. This study addresses the design, construction and testing of a cooling system by using the above two techniques. The aim was to study the effects of weather conditions on the efficiency of this system which was installed in Baghdad for April and May 2020. The common weather in these months is hot in Baghdad. The test room of the design which has a size of 1 m3 was situated to face the geographical south. The te
... Show MoreThis paper develops a fuzzy multi-objective model for solving aggregate production planning problems that contain multiple products and multiple periods in uncertain environments. We seek to minimize total production cost and total labor cost. We adopted a new method that utilizes a Zimmermans approach to determine the tolerance and aspiration levels. The actual performance of an industrial company was used to prove the feasibility of the proposed model. The proposed model shows that the method is useful, generalizable, and can be applied to APP problems with other parameters.