Background: The roles of AI in the academic community continue to grow, especially in the enhancement of learning outcomes and the improvement of writing quality and efficiency. Objectives: To explore in depth the experience of senior pharmacy students in using artificial intelligence for academic purposes. Methods: This qualitative study included face-to-face individual interviews with senior pharmacy students from March to May 2023 using a pre-planned interview guide of open-ended questions. All interviews were audio-recorded. Thematic analysis was used to analyze the data. Results: The results were obtained from 15 in-depth face-to-face interviews with senior pharmacy students (5th and 4th years). Eight participants were male, and seven were female (21–25 years old). All participants used ChatGPT for a few months for academic purposes, especially when writing take-home assignments. The perceptions were positive about the students’ gains from using ChatGPT. Still, at the same time, they admitted that AI might negatively impact the student’s motivation to learn new academic skills. Conclusions: The students believed that AI was very helpful, with concerns that it did not enhance their critical thinking or writing skills. Thus, educators need to change their strategies for teaching and testing students to improve student skills and identify students’ own work.
Throughout Agriculture has mostly relied on the use of natural fertilizers throughout human history, which are compounds that increase the nitrogen levels in the soil. Modern agriculture was made possible by the introduction of synthetic fertilizers at the end of the 19th centuryproduction of agriculture. Their application enhanced crop yields and sparked an agricultural revolution unlike anything the world had ever seen.In the near future, synthetic fertilizers are anticipated to continue to have a significant impa ct on human life, both positively and negatively. They are frequently utilized for producing all t ypes of crops and are essential to plant growth. The significance of synthetic fertilizers is their ability to provide the soil w
... Show MoreIn the literature, several correlations have been proposed for bubble size prediction in bubble columns. However these correlations fail to predict bubble diameter over a wide range of conditions. Based on a data bank of around 230 measurements collected from the open literature, a correlation for bubble sizes in the homogenous region in bubble columns was derived using Artificial Neural Network (ANN) modeling. The bubble diameter was found to be a function of six parameters: gas velocity, column diameter, diameter of orifice, liquid density, liquid viscosity and liquid surface tension. Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 7.3 % and correlation coefficient of 92.2%. A
... Show MoreThis study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur
... Show MoreNovel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
This study is considered to be the first on this sector of Tigris River after 2003, to evaluate the effect of Tharthar Arm on the composition and diversity of Copepoda in Tigris River. Six sampling sites were selected; two on the Tharthar Arm and four sites along the Tigris River, one before the confluence as a control site and the others downstream the confluence; thirty-five copepod taxa were recorded, 34 taxa in the Tigris River and 25 taxa in the Tharthar Arm.
The highest density of Copepoda was in site 2 at Tharthar Arm was 265584.2 Ind./m3 lead to an increasing in Copepoda density in Tigris River from 63878.2 Ind./m3 in site 1 before the confluence to 127198.3 Ind./m3 in site 4 immediately downstream the confluence. Also, the me
The mediation system is based on settling the dispute amicably through the intervention of a third party by bringing views closer away from the judiciary, which is an amicable way to settle disputes, which disputants resort to voluntarily, but some Western legislation has begun to impose resorting to mediation to settle disputes compulsorily, to take advantage of its advantages, get rid of the disadvantages of resorting to the judiciary in some disputes, and relieve pressure on the courts.
ABSTRACT: Ultimate bearing capacity of soft ground reinforced with stone column was recently predicted using various artificial intelligence technologies such as artificial neural network because of all the advantages that they can offer in minimizing time, effort and cost. As well as, most of applied theories or predicted formulas deduced analytically from previous studies were feasible only for a particular testing environment and do not match other field or laboratory datasets. However, the performance of such techniques depends largely on input parameters that really affect the target output and missing of any parameter can lead to inaccurate results and give a false indicator. In the current study, data were collected from previous rel
... Show More