Preferred Language
Articles
/
OBcBdZABVTCNdQwCKovO
Chitosan-vermiculite composite adsorbent: Preparation, characterization, and competitive adsorption of Cu(II) and Cd(II) ions
...Show More Authors

The cost-effective removal of heavy metal ions represents a significant challenge in environmental science. In this study, we developed a straightforward and efficient reusable adsorbent by amalgamating chitosan and vermiculite (forming the CSVT composite), and comprehensively investigated its selective adsorption mechanism. Different techniques, such as Fourier-transform infrared spectroscopy (FTIR), zeta potential analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer, Emmett, Teller (BET) analysis were employed for this purpose. The prepared CSVT composite exhibited a larger surface area and higher mesoporosity increasing from 1.9 to 17.24 m2/g compared to pristine chitosan. The adsorption capabilities of the CSVT composite and pristine chitosan for Cu(II) and Cd(II) species were systematically examined. Due to its porous structure and increased surface area, the CSVT composite demonstrated superior adsorption ability when compared to pristine chitosan. The maximum adsorption capacities of Cu(II) and Cd(II), determined by Langmuir adsorption isotherms in batch experiments, were found to be 116.22 and 147.64 mg/g, respectively, under initial pH conditions of 8 and an initial concentration of 250 mg/L. The thermodynamic analysis revealed that the adsorption process for both metal ions is spontaneous, endothermic physisorption, and thermodynamically favorable. These findings collectively affirm the CSVT composite as a highly promising adsorbent for the efficient and selective removal of Cu(II) and Cd(II) from aqueous solutions

Scopus Clarivate Crossref
View Publication
Publication Date
Thu Sep 01 2016
Journal Name
Saudi Journal Of Pathology And Microbiology
Synthesis, Characterization and Antibacterial Activities of Mixed Ligand Complexes of Symmetrical Schiff Base and 8-Hydroxyquinoline with Zn(II), Cd(II) and Hg(II)
...Show More Authors

The current work reports a new Schiff base [N1-benzylidenebenezene-1,2-diamine(L) = C20H16N2] has been synthesized from benzaldehyde (C6H5CHO) and O- aminoaniline (O-C6H4(NH2)2. Metal mixed ligand complexes of the Schiff base were prepared from chloride salts of Zn(II), Cd(II) and Hg(II) in ethanol and 8-hydroxyquinoline(8HQ)(C9H7NO) containing sodium hydroxide. All the complexes were characterized on the basis of their; FT-IR and U.V spectra, melting point, molar conductance, and determination of the percentage of the metal in the complexes by flame (AAS). In the all complexes, (8HQ) behaves as a bidentate ligand as primary ligand through –-OH phenolic group and –N groups of pyridine group. Also, the prepared ligand (L) was bidentate i

... Show More
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
Synthesis, Characterization and Stability Study of V(IV), Zr(IV), Rh(III), Pd(II), Cd(II) and Hg(II) Complexes with Pyrazol Derivative
...Show More Authors

In this work lactone (1) was prepared from the reaction of p-nitro phenyl hydrazine with ethylacetoacetate, which upon treatment with benzoyl chloride afforded the lactame (2). The reaction of (2) with 2-amino phenol produced a new Schiff base (L) in good yield. Complexes of V(IV), Zr(IV), Rh(III), Pd(II), Cd(II) and Hg(II) with the new Schiff base (L) have been prepared. The compounds (1, 2) were characterized by FT-IR and UV spectroscopy, as well as characterizing ligand (L) by the same techniques with elemental analysis (C.H.N) and (1H-NMR). The prepared complexes were identified and their structural geometries were suggested by using elemental analysis (C.H.N), flame atomic absorption technique, FT-IR and UV-Vis spectroscopy, in additio

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Mar 17 2012
Journal Name
Environmental Science And Pollution Research Volume
Equilibrium, kinetic, and thermodynamic biosorption of Pb(II), Cr(III), and Cd(II) ions by dead anaerobic biomass from synthetic wastewater
...Show More Authors

Purpose Heavy metals are toxic pollutants released into the environment as a result of different industrial activities. Biosorption of heavy metals from aqueous solutions is a new technology for the treatment of industrial wastewater. The aim of the present research is to highlight the basic biosorption theory to heavy metal removal. Materials and methods Heterogeneous cultures mostly dried anaerobic bacteria, yeast (fungi), and protozoa were used as low-cost material to remove metallic cations Pb(II), Cr(III), and Cd(II) from synthetic wastewater. Competitive biosorption of these metals was studied. Results The main biosorption mechanisms were complexation and physical adsorption onto natural active functional groups. It is observed that

... Show More
View Publication Preview PDF
Crossref (50)
Crossref
Publication Date
Sun Dec 06 2009
Journal Name
Baghdad Science Journal
Synthesis and Characterization of (Fe(II),Co(II),Ni(II) and Cu(II)) Complexes with Schiff Base derived from [benzoyl hydrazine] with [benzyl mono oxime]
...Show More Authors

The reaction of [Benzoyl hydrazine] with [Diphenyl mono oxime] and Glacial acetic acid was carried out in methanol gave a new tridentate ligand [Benzoic acid (2- hydroxyimino- 1, 2-diphyneylethylidene) - hydrazide]. This ligand was reacted with some metal ions (Fe(II), Co(II), Ni(II), and Cu(II)) in methanol with (1:1) metal : ligand ratio to give a series of new complexes of the general formula [M(L)Cl2.H2O], where M= Fe(11), Co(11), Ni(11) and Cu(11) . All compounds were characterized by spectroscopic methods (I.R, UV-Vis), elemental microanalysis (C.H.N), atomic absorption, magnetic susceptibility, and conductivity measurements. From the obtained data the proposed molecular structures were suggested for the complexes of Fe (II), Co (II)

... Show More
Publication Date
Sun Dec 06 2009
Journal Name
Baghdad Science Journal
Synthesis and Characterization of (Fe(II),Co(II),Ni(II) and Cu(II)) Complexes with Schiff Base derived from [benzoyl hydrazine] with [benzyl mono oxime]
...Show More Authors

The reaction of [Benzoyl hydrazine] with [Diphenyl mono oxime] and Glacial acetic acid was carried out in methanol gave a new tridentate ligand [Benzoic acid (2-hydroxyimino- 1, 2-diphyneylethylidene) - hydrazide]. This ligand was reacted with some metal ions (Fe(II), Co(II), Ni(II), and Cu(II)) in methanol with (1:1) metal : ligand ratio to give a series of new complexes of the general formula [M(L)Cl2.H2O], where M= Fe(11), Co(11), Ni(11) and Cu(11). All compounds were characterized by spectroscopic methods (I.R, UV-Vis), elemental microanalysis (C.H.N), atomic absorption, magnetic susceptibility, and conductivity measurements. From the obtained data the proposed molecular structures were suggested for the complexes of Fe

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed May 31 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Synthesis and antibacterial study of the ligand type Schiff base derived from amino acid [L- Phenylalanine] and its complexes with Co (II), Ni (II), Cu (II) and Zn (II) ions
...Show More Authors

  L-Phenylalanine amino acid was condensed with 2-hydroxybezaldehyde to give the Schiff base sodium 2-(2-hydroxybenzylideneamino)-3-phenylpropanoate, which was used as a precursor [NaHL]. The precursor was reacted with 1,2-dichloroethane to give the Schiff base sodium 2,2'-(2,2'-(ethane-1,2diylbis(oxy))bis(2,1-phenylene))bis(methan-1-yl-1-ylidene)bis(azan1-yl-1-ylidene)bis(3-phenyl propanoate), which was used as a ligand [Na2L], in complexation with some metal (II) chloride MCl2, where [M= Co(II), Ni(II), Cu(II) and Zn(II)], to give [M(L)] complexes. The [Na2L] ligand and All complexes were characterized by spectroscopic methods, [FTIR, UV-Vis, atomic absorption], melting point, chloride content, conductivity and magnetic susceptibi

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Desalination And Water Treatment
Biosorption of Cd(II) ions by Chlorella microalgae: isotherm, kinetics processes and biodiesel production
...Show More Authors

This study aims to remove Cd(II) ions from simulated wastewater by using Chlorophyceae algae (CA). Different parameters were studied to show their effects on the biosorption efficiency of CA. These parameters are: the effect of pH 3-7, initial metal ion concentration 20-200 mg/L, sorbent dos-age 0.05-2 g/L, contact time 5-180 min, and agitation speed 100-300 rpm. We found that both the Langmuir and Freundlich models appropriate for characterizing the metal removal process. The biosorption data fit best with the results of the pseudo-second-order kinetic model, demonstrating that the chemisorption process is the dominant mechanism controlling the removal. CA was char-acterized using the scanning electron microscopy test, prior to and post bi

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sun Jul 19 2020
Journal Name
Egyptian Journal Of Chemistry
Synthesis, characterization, industrial and biological application of Co(II),Ni(II),Cu(II) and Zn(II) complexes with azo ligand derived from metoclopramide hydrochloride and 3,5-dimethylphenol
...Show More Authors

Four complexes of Co(II),Ni(II),Cu(II) and Zn(II) with the azo ligand (4-chloro-N-(2-(dimethylamino)ethyl)-5-((2-hydroxy-4,6-dimethylphenol)diazenyl)-2-methoxybenzamide) L. The structure of ligand and complexes were confirmed on the basis of their analytical and spectral data, these dyes were tested as dyeing in cotton fabric, and also testing in light and cleaner firmness. Also, antimicrobial and antifungal activities of ligand and their complexes were evaluated and the results showed that the ZnL compound showed the higher antibacterial activity with inhibition zone of 13mm against Staphyloco-ccus epidermidis, Steptococcus sp. and Escherichia coli compared with ligand and other metal complexes .In case of ZnL compound the antifungal activ

... Show More
View Publication
Scopus (6)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Egyptian Journal Of Chemistry
Synthesis, Characterization, Industrial And Biological Application Of Co(II),Ni(II),Cu(II) And Zn(II) Complexes With Azo Ligand Derived From Metoclopramide Hydrochloride And 3,5-Dimethylphenol
...Show More Authors

Four complexes of Co(II),Ni(II),Cu(II) and Zn(II) with the azo ligand (4-chloro-N-(2-(dimethylamino)ethyl)-5-((2-hydroxy- 4,6-dimethylphenol)diazenyl)-2-methoxybenzamide) L. The structure of ligand and complexes were confirmed on the basis of their analytical and spectral data, these dyes were tested as dyeing in cotton fabric, and also testing in light and cleaner firmness. Also, antimicrobial and antifungal activities of ligand and their complexes were evaluated and the results showed that the ZnL compound showed the higher antibacterial activity with inhibition zone of 13mm against Staphyloco-ccus epidermidis, Steptococcus sp. and Escherichia coli compared with ligand and other metal complexes .In case of ZnL compound the antifungal acti

... Show More
Publication Date
Thu Aug 01 2013
Journal Name
Desalination And Water Treatment
Competitive biosorption of Pb(II), Cr(III), and Cd (II) from synthetic wastewater onto heterogeneous anaerobic biomass in single, binary, and ternary batch systems
...Show More Authors

Biosorption of lead, chromium, and cadmium ions from aqueous solution by dead anaerobic biomass (DAB) was studied in single, binary, and ternary systems with initial concentration of 50 mg/l. The metal-DAB affinity was the same for all systems. The main biosorption mechanisms were complexation and physical adsorption of metallic cations onto natural active functional groups on the cell wall matrix of the DAB. It was found that biosorption of the metallic cations onto DAB cell wall component was a surface process. The main functional groups involved in the metallic cation biosorption were apparently carboxyl, amino, hydroxyle, sulfhydryl, and sulfonate. These groups were part of the DAB cell wall structural polymers. Hydroxyle groups (–O

... Show More
Crossref (13)
Crossref