The cost-effective removal of heavy metal ions represents a significant challenge in environmental science. In this study, we developed a straightforward and efficient reusable adsorbent by amalgamating chitosan and vermiculite (forming the CSVT composite), and comprehensively investigated its selective adsorption mechanism. Different techniques, such as Fourier-transform infrared spectroscopy (FTIR), zeta potential analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer, Emmett, Teller (BET) analysis were employed for this purpose. The prepared CSVT composite exhibited a larger surface area and higher mesoporosity increasing from 1.9 to 17.24 m2/g compared to pristine chitosan. The adsorption capabilities of the CSVT composite and pristine chitosan for Cu(II) and Cd(II) species were systematically examined. Due to its porous structure and increased surface area, the CSVT composite demonstrated superior adsorption ability when compared to pristine chitosan. The maximum adsorption capacities of Cu(II) and Cd(II), determined by Langmuir adsorption isotherms in batch experiments, were found to be 116.22 and 147.64 mg/g, respectively, under initial pH conditions of 8 and an initial concentration of 250 mg/L. The thermodynamic analysis revealed that the adsorption process for both metal ions is spontaneous, endothermic physisorption, and thermodynamically favorable. These findings collectively affirm the CSVT composite as a highly promising adsorbent for the efficient and selective removal of Cu(II) and Cd(II) from aqueous solutions
The economical and highly performed anode material is the critical factor affecting the efficiency of electro-oxidation toward organics. The present study aimed to detect the best conditions to prepare Mn-Co oxide composite anode for the electro-oxidation of phenol. Deposition of Mn-Co oxide onto graphite substrate was investigated at 25, 30, and 35 mA/cm2 to detect the best conditions for deposition. The structure and the crystal size of the Mn-Co oxide composite electrode were examined by using an X-Ray diffractometer (XRD), the morphological properties of the prepared electrode were studied by scanning electron microscopy (SEM) and Atomic force microscopy (AFM) techniques, and the chemical composition of the various
... Show MoreBackground: Direct measurement of intracellular magnesium using erythrocytes has been suggested as a sensitive indicator for the estimation of body magnesium store. Marked depletion in plasma and erythrocyte magnesium levels was particularly evident in diabetic patients with advanced retinopathy and poor diabetic control. While insulin has been shown to stimulate erythrocyte magnesium uptake, hyperglycemia per se suppressed intracellular magnesium in normal human red cells.
Aim of the study: To investigate the erythrocyte magnesium level in Iraqi type I and II diabetic patients, with specific emphasis on the effect of both, metabolic control and the type of antidiabetic treatments.
Methods: Sixty two diabetic patients (7 with type
The aim of the currnet study to examine the effect of subclinical hypothyroidism (SCH) in diabetic patients on coagulation parameters. This retrospective case–control study involves 130 patients diagnosed with type 2 diabetes mellitus (T2DM), divided into 65 T2DM with newly diagnosed SCH and 65 euthyroid (EUT) T2DM patients without SCH. Fibrinogen (FIB) was significantly higher in SCH (508.2 ± 63.0 mg/dL) than EUT (428.1 ± 44.8 mg/dL). In the SCH patients, FIB correlated with several parameters, such as age (β = 0.396), body mass index (β = 0.578), glycated hemoglobin (β = 0.281), and activated partial thromboplastin time (β = 0.276). In conclusion SCH in DM patients appears to increase the magnitude of coagulopathy.
... Show More4-((2-hydroxy-3,5-dinitrophenyl)diazenyl)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one was produced through the reaction of diazonium salt from 4-amino antipyrine with 2,4-dinitrophenol. This ligand is examined by (UV-Vis, FTIR,1H,13CNMR, and LC-Mass) spectral techniques and micro elemental analysis (C.H.N.O). Co(II), Ni(II), Cu(II), and Zn(II) complexes were also performed and depicted. Metal chelates were distinguished by utilizing flame atomic absorption, infrared analysis, and elemental, visible, as well as ultraviolet spectroscopy, in addition to conductivity and magnetic quantification. Methods of mole ratio and continuous contrast have been studied to determine the nature of the compounds. Beer's law was followed throughout a co
... Show MoreIn an earlier paper, the basic analytical formula for particle-hole nuclear state densities was derived for non-Equidistant Spacing Model (non-ESM) approach. In this paper, an extension of the former equation was made to include pairing. Also a suggestion was made to derive the exact formula for the particle-hole state densities that depends exactly on Fermi energy and nuclear binding energies. The results indicated that the effects of pairing reduce the state density values, with similar dependence in the ESM system but with less strength. The results of the suggested exact formula indicated some modification from earlier non-ESM approximate treatment, on the cost of more calculation time
Salicylaldehyde was reacting with 2-amino benzoic acid to produce the Schiff base ligand benzoic acid 2-salicylidene (L). The prepared ligand was identified by Microelemental Analysis, FT.IR and UV-Vis spectroscopic techniques. A new complexes of Co(II),Ni(II),Cu(II) and Zn(II) with Schiff base was prepared in aqueous ethanol with a (1:1) M:L. The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Biological activity of the ligand and complexes against three selected types of bacteria were also examined. Some of the complexes exhibit good bacterial activities. From the obtained data the tetrahedral str
... Show MoreThe preparation and characterization of the Cu (II), Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) metal complexes of heterocyclic azo ligand 2-[(4`-sulphamide phenyl) azo] -4,5-diphenyl imidazole (4-SuBAI) have been studied by elemental analysis, FT-IR and UV-Vis Spectroscopic, magnetic moment and molar conductance methods. The analytical data showed that all chelate complexes were prepared with (metal-ligand) ratio of (1:2). The general formula of these complexes was [ML2X2]. nH2O [were L=2-[(4`-sulphamide phenyl) azo]-4,5-diphenyl imidazole and X=Cl, and the octahedral geometry were suggested for these complexes .