The cost-effective removal of heavy metal ions represents a significant challenge in environmental science. In this study, we developed a straightforward and efficient reusable adsorbent by amalgamating chitosan and vermiculite (forming the CSVT composite), and comprehensively investigated its selective adsorption mechanism. Different techniques, such as Fourier-transform infrared spectroscopy (FTIR), zeta potential analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer, Emmett, Teller (BET) analysis were employed for this purpose. The prepared CSVT composite exhibited a larger surface area and higher mesoporosity increasing from 1.9 to 17.24 m2/g compared to pristine chitosan. The adsorption capabilities of the CSVT composite and pristine chitosan for Cu(II) and Cd(II) species were systematically examined. Due to its porous structure and increased surface area, the CSVT composite demonstrated superior adsorption ability when compared to pristine chitosan. The maximum adsorption capacities of Cu(II) and Cd(II), determined by Langmuir adsorption isotherms in batch experiments, were found to be 116.22 and 147.64 mg/g, respectively, under initial pH conditions of 8 and an initial concentration of 250 mg/L. The thermodynamic analysis revealed that the adsorption process for both metal ions is spontaneous, endothermic physisorption, and thermodynamically favorable. These findings collectively affirm the CSVT composite as a highly promising adsorbent for the efficient and selective removal of Cu(II) and Cd(II) from aqueous solutions
A theoretical analysis studied was performed to study the opacity broadening of spectral lines emitted from aluminum plasma produced by Nd-YLF laser. The plasma density was in the range 1028-1026 )) m-3 with length of plasma about ?300) m) , the opacity was studied as function of plasma density & principle quantum number. The results show that the opacity broadening increases as plasma density increases & decreases with the spacing between energy levels of emission spectral line.
Di Benzylidenes were prepared by condensation of 1,2-diamino benzene with o- hydroxy benzaldehyde. These dibenzylidenes when treated with one equivalent of malonic anhydride or 5-oxo-spiro[2,3]hexane-4,6-dione in dry benzene give 6-membered heterocyclic ring system of 3-{2-[(2-Hydroxy-benzylidene)-amino]-phenyl}-2-(2-hydroxy –phenyl)-[1,3]oxazinane-4,6-diones ( 1-3) or 7-{2-[(2-hydroxy-benzylidene)-amino]-phenyl}-6-(2-hydroxy-phenyl)-5-oxa-7-aza-spiro[2.5]octane-4,8-diones ( 7- 9 ) But when two equivalents of malonic anhydride or 5-oxo-spiro[2,3]hexane-4,6-dione were used and under sam conditions compounds (4-6 , 10-12 ) were obtained .
Twelve N-(6-sustirured benzothanol-2-y1) succinamic acids and 3-(6-substitted benzonathol-2-y1)-carbamoyl propionyl chloride were synthesized in good yields from reaction of benzonathol2-yl)
Ursolic acid (UA, 3 ?-hydroxy-urs-12-en-28-oic acid) are isomeric triterpenic acids. The high quantities of pentacyclic triterpenoids in Scabiosa species seems to be obvious and there is an evidence that most of pentacyclic triterpenoids that have been isolated are saponins. This is one of the most important characteristic of the genus Scabiosa, the main aglycones are ursolic acid and oleanolic acid. In the current study, isolation from the aerial part and roots of Scabiosa palaestina L. was performed using Preparative HPLC. Furthermore, detection and quantitation of ursolic acid was performed by high performance thin layer chromatography (HPTLC). The identification of isolated triterpenoid involves two methods including FT-IR coupl
... Show MorePultruded materials made of Fiber-Reinforced Polymer (FRP) come in a broad range of shapes, such as bars, I-sections, C-sections, etc. FRP materials are starting to compete with steel as structural materials owing to their great resistance, low self-weight, and cheap maintenance costs, especially in corrosive conditions. This study aims to evaluate the effectiveness of a novel concrete Composite Column (CC) using Encased I-Section (EIS) as a reinforcement in contrast to traditional steel bars by using Glass Fiber-Reinforced Polymer (GFRP) as I-section (CC-EIS) to evaluate the effectiveness of the hybrid columns which have been built by combining GFRP profiles with concrete columns. To achieve the aims of this study, nine circular co
... Show MoreSteel–concrete–steel (SCS) structural systems have economic and structural advantages over traditional reinforced concrete; thus, they have been widely used. The performance of concrete made from recycled rubber aggregate from scrap tires has been evaluated since the early 1990s. The use of rubberized concrete in structural construction remains necessary because of its high impact resistance, increases ductility, and produces a lightweight concrete; therefore, it adds such important properties to SCS members. In this research, the use of different concrete core materials in SCS was examined. Twelve SCS specimens were subjected to push-out monotonic loading for inspecting their mechanical performance. One specimen was constructed from co
... Show MoreThe subject of this research involves studying adsorption to removal herbicide Atlantis WG from aqueous solutions by bentonite clay. The equilibrium concentration have been determined spectra photometry by using UV-Vis spectrophotometer. The experimental equilibrium sorption data were analyzed by two widely, Langmuir and Freundlish isotherm models. The Langmuir model gave a better fit than Freundlich model The adsorption amount of (Atlantis WG) increased when the temperature and pH decreased. The thermodynamic parameters like ?G, ?H, and ?S have been calculated from the effect of temperature on adsorption process, is exothermic. The kinetic of adsorption process was studied depending on Lagergren ,Morris ? Weber and Rauschenberg equati
... Show More