Internet of Things (IoT) technology could be an effective solution to accomplish real-time retrieval of historical electronic health records (EHRs) to present better service of healthcare. In a pilgrimage environment such as the Hajj, IoT can be applied by identifying the non-local patients as electronic tags, and the tag data can be read by wireless sensors. The data that is collected using Radio-Frequency Identification (RFID) can be acquired from a Wireless Sensor Network (WSN) in order to accomplish many decisions, such as sending an ambulance to a patient’s location, sending an emergency alert to his immediate family circle, and retrieving his EHR from a database. The main contribution of this research is to propose a conceptual IoT framework relevant to support the non-local patients through retrieval of EHR between countries via internet network. The conceptual framework based on four layers (connectivity, access, abstraction and service) is proposed to show how the IoT can be a solution for the case study. The validation results show that the proposed framework is useful to serve the health cases of Malaysian pilgrims.
Recently, Knowledge Management Systems (KMS) consider one of the major fields of study in educational institutions, caused by the necessity to identify their knowledge value and success. Hence, based on the updated DeLone and McLean’s Information Systems Success Model (DMISSM), this study set out to assess the success of the Perceived Usefulness of Knowledge Management Systems (PUKMS) in Iraqi universities. To achieve this objective, the quantitative method is selected as the research design. In total, 421 university administration staff members from 13 Iraqi private universities were conducted. This study highlights a number of significant results depending on structural equation modeling which confirms that system, information, and s
... Show MoreSoftware-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show MoreThis work deals with the preparation of a zeolite/polymer flat sheet membrane with hierarchical porosity and ion-exchange properties. The performance of the prepared membrane was examined by the removal of chromium ions from simulated wastewater. A NaY zeolite (crystal size of 745.8 nm) was prepared by conventional hydrothermal treatment and fabricated with polyethersulfone (15% PES) in dimethylformamide (DMF) to obtain an ion-exchange ultrafiltration membrane. The permeate flux was enhanced by increasing the zeolite content within the membrane texture indicating increasing the hydrophilicity of the prepared membranes and constructing a hierarchically porous system. A membrane contain
In this work Nano crystalline (Cu2S) thin films pure and doped 3% Al with a thickness of 400±20 nm was precipitated by thermic steaming technicality on glass substrate beneath a vacuum of ~ 2 × 10− 6 mbar at R.T to survey the influence of doping and annealing after doping at 573 K for one hour on its structural, electrical and visual properties. Structural properties of these movies are attainment using X-ray variation (XRD) which showed Cu2S phase with polycrystalline in nature and forming hexagonal temple ,with the distinguish trend along the (220) grade, varying crystallites size from (42.1-62.06) nm after doping and annealing. AFM investigations of these films show that increase average grain size from 105.05 nm to 146.54 nm
... Show MoreThis research aims to improve the radiation shielding properties of polymer-based materials by mixing PVC with locally available building materials. Specifically, two key parameters of fast neutron attenuation (removal cross-section and half-value layer) were studied for composite materials comprising PVC reinforced with common building materials (cement, sand, gypsum and marble) in different proportions (10%, 30% and 50% by weight). To assess their effectiveness as protection against fast neutrons, the macroscopic neutron cross-section was calculated for each composite. Results show that neutron cross-section values are significantly affected by the reinforcement ratios, and that the composite material PVC + 50% gypsum is an effect
... Show More