Internal curing is a method that has been advised to decrease the primary age cracking, mainly of concrete mixes using low (water to cementitious materials - w/cm) ratios corresponding to the self-compacting concrete-(SCC). This research aims to study the effect of the internal curing using saturated lightweight aggregate- (LWA) on the steel reinforcing corrosion in SCC. In this research, crushed bricks or thermostone were partially replaced by (20%) by the weight of sand and volumetrically measured. The results showed that the steel reinforcement of internally cured concrete showed a slight increase in corrosion up to 300 days of exposure to the saline solution (containing 3.5% NaCl). The ability of using the crushed bricks or thermostone as a replacement of natural sand as internal curing has no adverse effect on the corrosion of steel reinforcement.
Carbon fibre reinforced polymers are widely used to strengthen steel structural elements. These structural elements are normally subjected to static, dynamic and fatigue loadings during their life-time. A number of studies have focused on the characteristics of CFRP sheets bonded to steel members under static, dynamic and fatigue loadings. However, there is a gap in understanding the bonding behaviour between CFRP laminates and steel members under impact loading. This paper shows the effect of different load rates from quasi-static to 300 × 103 mm/min on this bond. Two types of CFRP laminate, CFK 150/2000 and CFK 200/2000, were used to strengthen steel joints using Araldite 420 epoxy. The results show a significant bond strength enhancemen
... Show MoreIn this research the relation between skin resistances and standard penetration test of over consolidated
clay soils has been studied. The research includes doing boreholes at Babil governorate in Iraq to get
undisturbed samples and standard penetration test. Determination skin friction from direct shear test between
smooth concrete and soil was explored in laboratory for design purposes and correlated with standard
penetration test values. In many foundation design problems, the shear strength between soil and
foundation materials were estimated or correlated without any direct methods for measurement.
Twelve strain controlled direct shear tests were performed simulate the shear strength interaction
between smooth c
In this study, a Hydroxyapatite (HA) coating was prepared on a titanium implant by an electrochemical deposition process. The titanium pre-treatment by anodizing in 1.65 mol/L sulfuric acid with (10V) at room temperature. The deposition was all conducted at a constant voltage of 6.0 V, for 1 h at room temperature. The coatings thus prepared were characterized with Fourier transform infrared spectroscopy (FTIR) and thickness of the coated layer.The electrochemical deposition of HA occurred on the titanium as a cathode. Coated titanium by HA after anodizing revealed a good corrosion protection efficiency even at a temperature ranged (293-323) K in artificial saliva. Activation energy and pre-exponential factor (kinetic parameters) were calcul
... Show MoreIn recent decades, tremendous success has been achieved in the advancement of chemical admixtures for Portland cement concrete. Most efforts have concentrated on improving the properties of concrete and studying the factors that influence on these properties. Since the compressive strength is considered a valuable property and is invariably a vital element of the structural design, especially high early strength development which can be provide more benefits in concrete production, such as reducing construction time and labor and saving the formwork and energy. As a matter of fact, it is influenced as a most properties of concrete by several factors including water-cement ratio, cement type and curing methods employed.
Because of acce
This paper studies the behavior of axially loaded RC columns which are confined with carbon fiber reinforced polymers’ sheet (CFRP) and steel jackets (SJ). The study is based on twelve axially loaded RC columns tested up to failure. It is divided into three schemes based on its strengthening type; each scheme has four columns. The main parameters in this study were the compressive strength of the concrete and steel reinforcement ratio. Furthermore, the results of the experimental test showed a substantial enhancement in the column's load-carrying capacity. When compared to the original columns, the CFRP sheet had a significant effect on improving the ductility of the column by increasing the axial deformation by about 59.2 to 95.7
... Show MoreIn this study, experimental mortar combinations with 1% micro steel fibers, were examined to create geopolymer mortars. To test the effect of the fibers on the mortar's resistance, the geopolymer mortar was designed with various proportions of more environmentally friendly materials fly ash and slag. The percentage of fly ash by weight was 50, 60, and 70% of the slag. The best results were obtained when a 50:50 ratio of fly ash and slag were mixed with 1% micro steel fibers. The results showed that the mixtures containing fibers performed better in the considered tests (toughness index, ductility index, and resilience index). In the impact resistance test, the mixture contained 50% fly ash by weight of the slag with a temperature of
... Show MoreAbstract
In the present work, thermal diffusivity and heat capacity measurements have been investigated in temperature range between RT and 1473 K for different duplex stainless steel supplied by Outokumpu Stainless AB, Sweden. The purpose of this study is to get a reliable thermophysical data of these alloys and to study the effect of microstructure on the thermal diffusivity and heat capacity value. Results show the ferrite content in the duplex stainless steel increased with temperature at equilibrium state. On the other hand, ferrite content increased with increasing Cr/Ni ratio and there is no significant effect of ferrite content on the thermal diffusivity value at room temperature. Furthermore, the heat capacity of all sam
... Show MoreBackground: This in vitro study compares a self-etch primer (SEP) to an etch-and-rinse (EaR) for bonding sapphire brackets by evaluation of the enamel etch-pattern, shear bond strength, amount of remnant adhesive and enamel surface damage following thermal and fatigue cyclic loading. Material and Methods: Ceramic (sapphire) brackets were bonded to 80 extracted human premolars using two enamel etching protocols: conventional EaR using 37% phosphoric acid (PA) gel (control), and a SEP (Transbond Plus). Each group was subdivided into two subgroups (n=20 teeth) according to the time of bracket debonding: after 24 h water storage or following 5000 thermo-cycles plus 5000 cycles fatigue loading, to determine the shear bond strength (SBS), adhesiv
... Show MoreThis research aims to identify the effective role of self-managed teams in the quality of service performance in the directorate of Ramadi municipality. The problematic nature of our research involves this main question of the effective role of self-managed teams in the Municipality of Ramadi in improving the services of performance quality to the beneficiaries from the Directorate service. The importance of this study lies in the role played by the work teams in the organizations that excel in their field, the attendant of the changes in the leadership, administrative roles of the institutions, and teams leaders, will be achieved by the self-managed teams in improving the quality of the service provided by the institution to whi
... Show MoreThis paper introduces experimental results of eighteen simply supported reinforced concrete beams of cross sections ( ) and length 3000 mm to study the effect of lacing reinforcement on the performance of such beams under static and fatigue loads. Twelve reinforced concrete beams (two of them are casted with vertical shear reinforcement used as control beams) are tested under four points bending loading with displacement control technique and six laced reinforced concrete beams were exposed to high frequency (10 Hz) by fixing the fatigue load in each cycle. Three parameters are used in the designed beams, which are: lacing bar diameter (4mm, 6mm, and 8mm), lacing bar inclination angle to horizontal , and lacing steel rat
... Show More