Coal fines are highly prone to be generated in all stages of Coal Seam Gas (CSG) production and development. These detached fines tend to aggregate, contributing to pore throat blockage and permeability reduction. Thus, this work explores the dispersion stability of coal fines in CSG reservoirs and proposes a new additive to be used in the formulation of the hydraulic fracturing fluid to keep the fines dispersed in the fluid. In this work, bituminous coal fines were tested in various suspensions in order to study their dispersion stability. The aggregation behavior of coal fines (dispersed phase) was analyzed in different dispersion mediums, including deionized-water, low and high sodium chloride solutions. Furthermore, the effect of Sodium Dodecyl Benzene Sulfonate (SDBS), an anionic surfactant, on fine aggregation in the suspensions was investigated over a wide alkaline range. At a known pH, the results of stability were validated with the proppant pack glass column test and further verified with microscopic images. It was observed that adding SDBS to the hydraulic fracturing fluid keeps the coal fines well-dispersed in the post-hydraulic fracturing flow back and prevents coal fines aggregation, and ultimately helps permeability enhancement. The results show that at a constant pH, as salinity increases, the zeta-potential (an indirect indicator of stability of the coal-water slurry) reduces. Also, a trace amount of SDBS substantially enhances the dispersion stability of coal fines. This enhancement dictates that coal fines will not congregate and will not plug the proppant pack. Furthermore, the results were confirmed by proppant pack glass-column tests and microscopic images, the result of which illustrate much less aggregation when having SDBS added to the suspension. Polymeric surfactants have been used in the field to disperse coal fines. However, it causes the coal matrix to swell and clog the pore throats, thus reducing the permeability. The anionic surfactant, SDBS, has never been tried in field applications to disperse coal fines. The current research demonstrates the considerable potential of SDBS, as a hydraulic fracturing fluid additive, in enhancing the dispersion stability of the coal fines.
Ortho amino hydrazobenzene (L) has been prepared from the reaction of ortho amino phenyl thiol with phenyl hyrazan in mole ratio(1:1). It has been characterized by elemental analysis (C, H, N), IR, UV–Vis. The complexes of the bivalent ions (Co, Ni, Cu, Zn, Pd, Cd, Hg and Pb) and the trivalent (Cr) have been prepared and characterized too. The structural have been established by elemental analysis(C,H,N), IR , UV – Vis spectra , conductivity measurements , atomic absorption and magnetic susceptibility . The complexes showed characteristic behaviour of octahedral geometry around the metal ion and the( N,N) ligand coordinated in bidentate modeexcept with pd showed square planer. ? ,kf , ?max for the complexes were estimated too .
... Show MoreOrtho amino hydrazobenzene (L) has been prepared from the reaction of ortho amino phenyl thiol with phenyl hyrazan in mole ratio(1:1). It has been characterized by elemental analysis (C, H, N), IR, UV–Vis. The complexes of the bivalent ions (Co, Ni, Cu, Zn, Pd, Cd, Hg and Pb) and the trivalent (Cr) have been prepared and characterized too. The structural have been established by elemental analysis(C,H,N), IR , UV – Vis spectra , conductivity measurements , atomic absorption and magnetic susceptibility . The complexes showed characteristic behaviour of octahedral geometry around the metal ion and the( N,N) ligand coordinated in bidentate modeexcept with pd showed square planer. ? ,kf , ?max for the complexes were estimated too . ? for Co
... Show MoreBackground: Bilastine (BLA) is a second-generation H1 antihistamine used to treat allergic rhinoconjunctivitis. Because of its limited solubility, it falls under class II of the Biopharmaceutics Classification System (BSC). The solid dispersion (SD) approach significantly improves the solubility and dissolution rate of insoluble medicines. Objective: To improve BLA solubility and dissolution rate by formulating a solid dispersion in the form of effervescent granules. Methods: To create BLA SDs, polyvinylpyrrolidone (PVP K30) and poloxamer 188 (PLX188) were mixed in various ratios (1:5, 1:10, and 1:15) using the kneading technique. All formulations were evaluated based on percent yield, drug content, and saturation solubility. The fo
... Show MoreMaximizing the net present value (NPV) of oil field development is heavily dependent on optimizing well placement. The traditional approach entails the use of expert intuition to design well configurations and locations, followed by economic analysis and reservoir simulation to determine the most effective plan. However, this approach often proves inadequate due to the complexity and nonlinearity of reservoirs. In recent years, computational techniques have been developed to optimize well placement by defining decision variables (such as well coordinates), objective functions (such as NPV or cumulative oil production), and constraints. This paper presents a study on the use of genetic algorithms for well placement optimization, a ty
... Show MoreA statistical optical potential has been used to analyze and
evaluate the neutron interaction with heavy nuclei 197Au at the
neutron energy range (1-20 MeV). Empirical formulae of the optical
potentials parameters are predicted by using ABAREX Code with
minimize accuracy compared with experimental bench work data.
The total elastic, absorption, shape elastic and total compound crosssections are calculated for different target nuclei and different
incident neutron energies to predict the appropriate optical
parameters that suit the present interaction. Also the dispersion
relation linking between real and imaginary potential is analyzed
with more accuracy. The results indicate the behavior of the
dispersion c
In this study, simple, low cost, precise and speed spectrophotometric methods development for evaluation of sulfacetamide sodium are described. The primary approach contains conversion of sulfacetamide sodium to diazonium salt followed by a reaction with p-cresol as a reagent in the alkaline media. The colored product has an orange colour with absorbance at λmax 450 nm. At the concentration range of (5.0-100 µg.mL-1), the Beer̆ s Low is obeyed with correlation coefficient (R2= 0.9996), limit of detection as 0.2142 µg.mL-1, limit of quantification as 0.707 µg.mL-1 and molar absorptivity as 1488.249 L.mol-1.cm-1. The other approach, cloud point extraction w
... Show More


