Coal fines are highly prone to be generated in all stages of Coal Seam Gas (CSG) production and development. These detached fines tend to aggregate, contributing to pore throat blockage and permeability reduction. Thus, this work explores the dispersion stability of coal fines in CSG reservoirs and proposes a new additive to be used in the formulation of the hydraulic fracturing fluid to keep the fines dispersed in the fluid. In this work, bituminous coal fines were tested in various suspensions in order to study their dispersion stability. The aggregation behavior of coal fines (dispersed phase) was analyzed in different dispersion mediums, including deionized-water, low and high sodium chloride solutions. Furthermore, the effect of Sodium Dodecyl Benzene Sulfonate (SDBS), an anionic surfactant, on fine aggregation in the suspensions was investigated over a wide alkaline range. At a known pH, the results of stability were validated with the proppant pack glass column test and further verified with microscopic images. It was observed that adding SDBS to the hydraulic fracturing fluid keeps the coal fines well-dispersed in the post-hydraulic fracturing flow back and prevents coal fines aggregation, and ultimately helps permeability enhancement. The results show that at a constant pH, as salinity increases, the zeta-potential (an indirect indicator of stability of the coal-water slurry) reduces. Also, a trace amount of SDBS substantially enhances the dispersion stability of coal fines. This enhancement dictates that coal fines will not congregate and will not plug the proppant pack. Furthermore, the results were confirmed by proppant pack glass-column tests and microscopic images, the result of which illustrate much less aggregation when having SDBS added to the suspension. Polymeric surfactants have been used in the field to disperse coal fines. However, it causes the coal matrix to swell and clog the pore throats, thus reducing the permeability. The anionic surfactant, SDBS, has never been tried in field applications to disperse coal fines. The current research demonstrates the considerable potential of SDBS, as a hydraulic fracturing fluid additive, in enhancing the dispersion stability of the coal fines.
The present work shows a theoretical results that have been used the functional Hybrid of three parameters Lee-Yang-Parr (B3LYP) of the quantum mechanical approach for density functional theory with (Spanish Initiative for Electronic Simulations with Thousands of Atoms) SIESTA code. All calculations were carried out employing the used method at the Gaussian 09 package of programs. It was reported the main point for research on dominance of the bandgap of elongated pi-conjugated molecules by using different chemical groups replacing hydrogen atom in the most molecules that used in this work. The side groups creates another factor that controls the value of the band gap. The dihedral angle between the two pheny
... Show Morea porentioncsisteve has been carried out of the corrosion behavior of inconel(600) in chloride ions (Cl) over the tempreatures 293 over the temperatures 308K in both the dcacrated and the alloy
Background: Bilastine (BLA) is a second-generation H1 antihistamine used to treat allergic rhinoconjunctivitis. Because of its limited solubility, it falls under class II of the Biopharmaceutics Classification System (BSC). The solid dispersion (SD) approach significantly improves the solubility and dissolution rate of insoluble medicines. Objective: To improve BLA solubility and dissolution rate by formulating a solid dispersion in the form of effervescent granules. Methods: To create BLA SDs, polyvinylpyrrolidone (PVP K30) and poloxamer 188 (PLX188) were mixed in various ratios (1:5, 1:10, and 1:15) using the kneading technique. All formulations were evaluated based on percent yield, drug content, and saturation solubility. The fo
... Show MoreA simple and sensitive spectrophotometric method is described for the determination of diclofenac sodium (DCL), in pure form and pharmaceutical formulations. The method is based on the oxidation of 2,4-dinitrophenylhydrazine (2,4-DNPH) and coupling of the oxidized product with DCL in alkaline medium to give intensively colored chromogen which exhibits maximum absorption (λmax) at 600 nm, and the concentration of DCL was determined spectrophotometrically. The optimum reaction conditions and other analytical parameters were evaluated. In addition to classical univariate optimization, modified simplex method (MSM) has been applied in optimization of the variables affecting the color producing reaction. Beer’s law is obeyed in the
... Show MoreCalculations of sputtering yield for Lithium,Sodium and Krypton bombarded by the same own ions are achieved by using TRIM program.The relation of angular dependent of sputtering yield for each ion/target is studied. Also, the dependence of the sputtering yield of target on the energy of the same ion is discussed and plotted graphically. Many researchers applied polynomials function to fit the sputtering data from experimental and simulation programs, however, we suggest to use Ior function for fitting the angular distribution of the sputtering yield. A New data for fitting coefficients of the used ion/target are presented by applying used function for the dependence of the sputtering yield on the ion energy.
This study was aimed to investigat integrated system for in vitro growth of paulownia plants by assessing the efficacy of chlorine dioxide (ClO2) as an alternative to autoclave in sterilizing culture medium. Therefore, this study was devised to compare autoclave sterilization at three different times (5, 10, and 15) minutes and three different concentrations of ClO2 (0, 0.4, 0,8, 1) mg/L. The results showed that, compared with (0.4) mg/L concentration, concentrations of (0.8 and 1) mg/L are more effective at sterilizing the culture medium. ClO2 sterilization improved individual single node growth more than autoclave sterilization. Since ClO2 is non-toxic, it could be used as a safe alternative to autoclave when propagating paulown
... Show MoreIn the present work, the magnetic dipole and electric quadrupole moments for some sodium isotopes have been calculated using the shell model, considering the effect of the two-body effective interactions and the single-particle potentials. These isotopes are; 21Na (3/2+), 23Na (3/2+), 25Na (5/2+), 26Na (3+), 27Na (5/2+), 28Na (1+) and, 29Na (3/2+). The one-body transition density matrix elements (OBDM) have been calculated using the (USDA, USDB, HBUMSD and W) two-body effective interactions carried out in the sd-shell model space. The sd shell model space consists of the active 2s1/2, 1d5/2,
... Show MoreA statistical optical potential has been used to analyze and
evaluate the neutron interaction with heavy nuclei 197Au at the
neutron energy range (1-20 MeV). Empirical formulae of the optical
potentials parameters are predicted by using ABAREX Code with
minimize accuracy compared with experimental bench work data.
The total elastic, absorption, shape elastic and total compound crosssections are calculated for different target nuclei and different
incident neutron energies to predict the appropriate optical
parameters that suit the present interaction. Also the dispersion
relation linking between real and imaginary potential is analyzed
with more accuracy. The results indicate the behavior of the
dispersion c
An experimental work has been done to study the major factors that affect the axial dispersion of some hydrocarbons during liquid-liquid miscible displacement. Kerosene and gas oil are used as displacing phase while seven liquid hydrocarbons of high purity represent the displaced phase, three of the liquids are aromatics and the rest are of paraffinic base. In conducting the experiments, two packed beds of different porosity and permeability are used as porous media.
The results showed that the displacement process is not a piston flow, breakthrough of displacing fluids are shown before one pore volume has been injected. The processes are stable with no evidence of viscous fingering.
Dispersion model as a
... Show More